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CONDUCTION STATES OF THE HUMAN DOPAMINE TRANSPORTER 

 

By Krasnodara Nikolaeva Cameron, Ph.D. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
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Virginia Commonwealth University, 2015 

Dissertation Director: Louis J De Felice, Ph.D. 
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Under normal conditions, a natural rewarding experience causes depolarization of midbrain 

dopaminergic neurons and exocytotic dopamine (DA) release into the synaptic cleft. A tonic 

increase of dopamine (DA) in the nucleus accumbens is required for associating everyday events 

and behaviors with rewards. The increase in synaptic DA activates presynaptic and postsynaptic 

dopamine receptors and results in reward-directed associative learning behaviors. The dopamine 

transporter (DAT) clears DA from the synaptic cleft by transporting it back into the presynaptic 

terminal, thus terminating DA signal transduction. However, many addictive exogenous 

compounds such as amphetamine (AMPH) and cocaine (COC) directly interact with DAT and 

produce a much greater phasic augmentation of synaptic DA levels. The dysregulation of 

dopaminergic homeostasis has been established as the primary source of numerous neurological 

disorders including Parkinson’s disease and drug addiction. DAT’s activity is also associated with 

ionic current that can be measured by voltage clamp techniques. Psychostimulants like AMPH and 
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COC directly interact with DAT altering its ionic currents. The classical view of psychostimulant 

action suggests that these drugs can be discriminated based on their effects on DAT activity. 

Reuptake inhibitors like COC decrease constitutive leak currents through DAT and prevent DA 

transport and thus raise its synaptic concentration. Substrates like AMPH enter the presynaptic 

terminal via DAT and thus compete with DA uptake. Under voltage clamp conditions, the transport 

of substrate alongside Na+ and other ions give rise to a net inward depolarizing current.  The 

resulting increase of extracellular DA levels is thus due to competition for transport, reverse 

transport, and exocytotic DA release due to DAT-induced depolarization. 

Focusing our attention on electrophysiological techniques, we show that certain functional 

substrate-type psychostimulants (STPs), but not COC or DA itself, can produce a novel type of 

DAT-associated persistent current (IPC) in addition to an initial peak current (ISTP). The persistent 

current is distinct from the transport-associated current elicited by DA (IDA) and the constitutive 

leak current (IL) through DAT. Unlike IDA and IL, the newly-identified STP-dependent persistent 

current, IPC, lasts for many minutes after external substrate removal in the oocyte expression 

system. In transiently transfected HEK 293 cells we also see a persistent current that is described 

kinetically. HEK 293 cells have faster on and off kinetics (τ1/2) than their counterparts in oocytes 

for both DA and S-AMPH induced currents; however, the persistence ratio of S-AMPH to DA 

induced off kinetics was comparable in both oocyte and mammalian expression systems. Finally, 

we demonstrate drug-induced DAT currents can activate voltage-gated calcium channels (CaV) 

associated with dopaminergic excitability mammalian expression system. The electrical coupling 

between hDAT and CaV was further investigated in a human midbrain dopaminergic cell line. 

Understanding how STPs interact with DAT to produce novel conductance states may facilitate 

the development of unique therapeutic strategies to treat psychostimulant abuse. 
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Chapter 1 BACKGROUND 

 

 

 

 

1.1. Introduction of DAT 

 The neurotransmitter DA regulates cognition, voluntary movement, motivation, and 

reward [7, 9]. As illustrated in Figure 1, DA is synthesized in the cell bodies of dopaminergic 

neurons located in the substantia nigra (SN) and the ventral tegmental area (VTA) of the brain. 

Upon depolarization of the presynaptic terminal, voltage-gated calcium channels (CaVs) activate 

and allow calcium (Ca2+) to enter and to interact with proteins required for vesicular fusion and 

exocytotic DA release. DA signaling is a balance of neurotransmitter release during tonic and 

phasic activity of dopaminergic neurons and its clearance from the cleft. The primary mechanism 

of clearance is reuptake through the dopamine transporter (DAT, SLC6A), and to a lesser extend 

degradation by enzymes and diffusion away from the synapse [9]. The plasma membrane protein 

DAT regulates DA signal transduction and homeostasis by transporting the released synaptic 

neurotransmitter into the presynaptic neuron using Na+ and Cl- electrochemical gradients [10, 11]. 

Within dopaminergic neurons in the central nervous system (CNS) another transporter, the 

vesicular monoamine transporter 2 (VMAT2), uses a proton gradient to recycle and concentrate 

cytosolic DA back in synaptic vesicles for subsequent release [12]. DATs are strategically located 
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in the soma, dendrites, and perisynaptic areas of dopaminergic neurons [13]. Their proper function 

and location are crucial for dopaminergic signaling.  

 

  

 

 

Figure 1: Dopaminergic synapse DAT is located at the perisynaptic area of dopaminergic 

terminal. It transports released synaptic DA back in the presynaptic cell to be repackaged in 

vesicles for subsequent release. AMPH and COC interact directly with DAT. AMPH acts as 

substrate and is transported, while COC binds the transporter and arrests its function. Figure 

adapted from [7].  

VMAT

2 
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Dysfunction in transporter activity or expression levels that affect DA concentration in 

different locations of the brain may lead to neurological, psychiatric, and neuroendocrine 

disorders. Figure 2 lists some of the disorders associated with either increased or decreased DA 

levels in the different dopaminergic pathways [8]. For example, augmentation of DA in the 

prefrontal cortex (PFC) is linked to attention deficit hyperactivity disorder (ADHD) and 

schizophrenia, while decreased DA levels in the striatum are associated with Parkinson’s and 

Huntington’s disease. Increased levels of DA in the nucleus accumbens (NAcc) has been 

implicated in drug addiction. Albeit through different mechanisms, all classes of abused drugs 

increase extracellular levels of DA particularly in NAcc [14]. The released DA activate DA 

receptors which signal higher brain regions, e.g., the prefrontal cortex, to translate motivational 

input into behavioral output [15]. The importance of DAT in the psychostimulant dependence is 

confirmed in animals with disrupted mesolimbic dopaminergic system (via knock-outs or lesions) 

or dopamine receptor antagonists, where abuse related effects of psychostimulants can be 

eliminated [16-18]. Moreover, in DAT knock-in mice enhanced psychostimulant reinforcement is 

observed [19, 20]. 
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Figure 2: Dopaminergic pathways and their involvement in diseased states There are four 

major dopaminergic pathways that are involved in numerous neurological psychiatric, and 

neuroendocrine diseased. The mesocortical pathway (blue) originates from the ventral 

tegmental area (VTA) and projects to the prefrontal cortex (PFC). The mesolimbic pathway 

(blue) connects VTA to the nucleus accumbens (nAcb). The nigrostriatal pathway (red) projects 

from the substantia nigra to the striatum. Lastly, the tuberoinfundibular pathway (orange) 

connects the hypothalamus to the pituitary gland. Disorders associated with each pathway are 

listed in the text boxes linked to them. Figure adapted from [8].  
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1.2. DAT function 

DAT is the primary mediator of synaptic DA clearance. The transport process is Na+ and 

Cl- dependent and it is driven by Na+ electrochemical gradient. Transporter function is classically 

described as following the alternating access model (AAM) originally defined in 1966 by 

Jardetzky for ATPase pumps and since adopted for co-transporters [21]. Flux studies revealed 

Michaelis-Menten type relationship between transport and concentration of DA, Na+, and Cl- [10]. 

Independent studies from Krueger and Schenk’s laboratory found Na+ concentration dependence 

on uptake was sigmoidal while Cl- concentration dependence was rectangular hyperbola, hence 

assigning a transport stoichiometry of 1DA: 2Na+: 1Cl- per transport cycle [10, 21, 22]. Using 

radiolabeled ligand uptake and irreversible binding assays, transporter turnover rate was calculated 

to be one full cycle every two seconds; therefore, using the proposed stoichiometry and because 

DA is a monovalent cation at physiological pH, one positive charge enters the cell every second 

through DAT [10]. Thus, the transporter is predicted to be electrogenic and the current generated 

by 1 million transporters acting simultaneously would be 0.16 pA. Nevertheless, numerous reports 

exist of the dopamine transporter eliciting much larger currents, well beyond the prediction of 

AAM [1, 6, 21, 23]. In addition, Sonders et. al. report a variable number of charges moving though 

DAT at different membrane potentials, thus contradicting the fixed stoichiometry model and 

proposing transport-uncoupled DAT current [23]. The unaccounted for DAT currents in addition 

to the fast reuptake of DA required at the synapse suggest for an alternative and/or combined ion 

channel/transporter mechanism of action. Figure 3 depicts a DAT model that has both alternating 

access mode (outward open, occluded, inward facing) and ion channel mode of transport [4]. DAT-

generated currents through the ion channel mode are sufficient to affect membrane potential and 

excitability [24, 25]. Because a number of psychostimulants interact with DAT to produce or alter 
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its ionic currents [1, 2, 6, 26]. The mechanisms by which STPs control DAT activity and modulate 

membrane potential is of particular interest.  
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Figure 3: Alternating access and channel modes of transport Substrate, Na+, and Cl- bind to 

outward facing transporter (i) outer gate closing (black bars) brings DAT to occluded state (ii) 

which then transitions to the inward facing conformation (iii) releasing substrate and ions to 

cytosol. The empty transporter then returns to the outward facing conformation (i). The 

transporter may undergo another transition (dashed lines) to a channel state (iv) where both 

gates are open simultaneously and currents are observed following rush of ions down their 

electrochemical gradients. Figure adapted from [4].  
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1.3. DAT regulation 

DAT activity is contingent upon its presence at the cell membrane. DAT is synthesized in 

the endoplasmic reticulum (ER), transported to the Golgi for N-glycosylation at the 2nd 

extracellular loop and trafficked to the plasma membrane [27]. Different signaling pathways have 

shown effect on transporter cell surface expression both constitutively and upon stimulation [28, 

29]. DAT has several consensus sites for posttranslational modifications at its cytosolic amino (N) 

and carboxyl (C) terminus. On the N terminus a cluster of serine residues are involved in PKC 

phosphorylation, which is important in DA efflux. Deletions and mutations of these residues on 

DAT results in reduced phosphorylation and internalization of the protein upon PKC activation 

[30, 31]. There is evidence for Ca2+/Calmodulin-dependent protein kinase II interactions with the 

C-terminus of DAT that regulate DA efflux [32, 33]. Residues 587-596 in DAT’s carboxyl 

terminus play a role in its constitutive protein internalization [34]. More recent studies show that 

DAT is regulated by PIP2 suggesting the importance of membrane lipid composition in transporter 

function [35]. DAT substrates like AMPH and METH cause DAT down-regulation, while DAT 

reuptake inhibitors or blockers cause transporter up-regulation as determined by 

immunofluorescence confocal microscopy in mammalian expression system  [36, 37]. The 

reduction and rise of DAT at the plasma membrane can be further monitored using voltage clamp 

techniques where current amplitude and kinetics can be measured for functional transporters [2, 

38]. Moreover, DAT regulation by psychostimulants was confirmed by postmortem binding 

studies in cocaine overdose victims, showing higher number DAT binding sites [39, 40]. The 

numerous DAT regulation mechanisms contribute to an already complex picture of DAT function 

and are an active area of research aiming at understanding drug dependence.  
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1.4. DAT-associated currents 

DAT uses Na+ and Cl- electrochemical gradients for the uphill DA transport. At 

physiological pH, DA carries one positive charge (the –NH group has a pKa ~ 10, 

www.drugbank.ca). Using voltage clamp techniques one can monitor the ionic currents generated 

by the charged species moving through DAT. Various studies show DAT has an inherent leak 

current (IL) [1, 2, 6] that is present in the absence of substrates. This current, IL, is observed upon 

insertion of the protein in the cell membrane. IL is composed of monovalent cations and is revealed 

upon application of DAT inhibitors [23]. Figure 4 shows DA and other substrate, like AMPH, 

induce relatively large inward drug-induced currents (IDA and ISTP) representing a net positive 

charge entering the cell at potentials near rest. All DAT currents (IL, IDA, and ISTP) can be identified 

using DAT reuptake inhibitors like cocaine (COC). COC’s block of inward IL or IDA appears as an 

outward deflection of the current trace under voltage clamp conditions, demonstrating the 

inhibition of the inward constitutive leak through the transporter [1, 6, 23]. Recently, we described 

a new long lasting conduction state of DAT. Following S-AMPH exposure and subsequent 

removal, DAT continues to elicit an inward current that persists for many minutes in Xenopus 

oocyte expression system. We termed this depolarizing current induced by previous exposure to 

S-AMPH the persistent current (IPC) [1, 2, 6]. This current appears to be caused by an internal S-

AMPH and hDAT interaction [2]. We have built a functional model of hDAT with two binding 

sites for STPs: an extracellular site that opens the transporter-channel, and an intracellular site that 

holds the transporter open after external S-AMPH is removed and is responsible for the persistent 

current; this mechanism is referred to as a molecular stent [2]. The location of interaction site(s) is 

an ongoing project in our laboratory utilizing the structure of the Drosophila DA transporter, 

dDAT [41] to build and test an hDAT homology model. The data we have gathered strongly 
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supports the idea that hDAT currents play a significant role in neuronal excitability and 

consequently in transmitter release. 
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Figure 4: hDAT currents hDAT expressing Xenopus oocytes voltage clamped to -60 mV. All 

drug applications are of 10 µM concentration. DA perfused outside for 60 s (horizontal bar 

above trace) induces inward depolarizing current (IDA) that returns swiftly to baseline upon 

removal. 60 s application of S-AMPH produces similar size peak current (ISTP); however, after 

washout, the current establishes a new baseline below the original value, called persistent 

current (IPC). This IPC is hDAT-mediated since it is blocked by addition of COC. In addition, 

COC reduces/eliminates the constitutive leak current (IL) associated with hDAT insertion in the 

cell membrane, which appears as an outward deflection in the current trace. 
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1.5. DAT substrate type psychostimulants- STPs 

Psychostimulants cause hyperactivity, euphoria, and cardiovascular effects [42, 43]. The 

elevation of mood and the subsequent drug seeking behavior associated with psychostimulants are 

mediated by increased levels of DA in the nucleus accumbens (mesolimbic reward circuits) that 

stimulate dopamine receptors [44, 45]. A number of psychostimulants such as amphetamine 

(AMPH) and methamphetamine (METH), abbreviated as STPs (substrate type psychostimulants), 

are DAT substrates [1, 6, 46]. These compounds mimic the action of the endogenous 

neurotransmitter DA and are transported into the presynaptic cell via DAT, producing an inward 

depolarizing current at the resting membrane potential [1, 2, 6, 47]. DAT substrates, including DA 

itself, cause DA release [48-52]. This substrate-induced release is partially attenuated by the 

presence of voltage-gated sodium channel blockers like tetrodotoxin (TTX); it is also partially 

affected by external Ca2+ manipulation, but pretreatment with gamma-butyrolactone (an inhibitor 

of dopaminergic cell firing) fails to alter DA release [48, 52, 53]. There are several proposed 

mechanisms for the STP-induced DA release: 1) exocytotic DA release [2, 24, 44, 54], 2) 

facilitated exchange [55], 3) weak base DA depletion from synaptic vesicles [56, 57], and 4) 

reverse transport [58]. These mechanisms are not mutually exclusive, and abundant experimental 

evidence exists for each one. Ingram et al. and Saha et al. show that in midbrain dopaminergic 

neurons, AMPH-induced depolarizing currents increase cell excitability and thereby exocytotic 

DA release [24, 59]. Likewise, in 2011 Ramsson et al. demonstrated action potential-dependent 

dopaminergic neurotransmission by AMPH in anesthetized rats [44], while Daberkow et al. 

showed equivalent results in ambulatory rats [54]. Meanwhile, in a study by Jones et al., it is 

pointed out that in DAT homozygous knock-out mice, DAT’s presence is essential for substrate-

induced DA efflux into the extracellular space [18]; in the DAT -/- mice study, AMPH decreases 
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stimulation-dependent DA release, which is an exocytotic process. On the other hand, after 

increase of cytoplasmic DA, there is no increase of extracellular dopamine, implying the necessity 

of AMPH-bound DAT for reverse transport of neurotransmitters [18]. Furthermore, Sulzer et al. 

found AMPH reduces DA quantal size due to redistribution of DA in the cytosol  [57]. Thus 

evidence exists for both exocytotic and reverse transport as mechanisms for substrate-induced DA 

release. 

Although the dopaminergic system is established as the site of action of psychostimulants, 

it is well known that many compounds also affect the serotonergic system which is important 

modulator of behavioral effects. Thus, psychostimulants can produce both DA-mediated, abuse-

related effects and 5-HT-mediated, abuse limiting effects [3, 60]. Furthermore, studies show that 

releasers that are equipotent at DAT and SERT have minimal abuse liability and suppress drug-

seeking behavior, especially promising appears the 30-fold selectivity of DA vs. 5-HT release [46, 

61]. 

1.5.1. Amphetamine and methamphetamine  

Amphetamine and methamphetamine (METH) are homologues of phenethylamine and are 

the parent compounds of a wide range of psychoactive derivatives. These stimulants increase 

locomotion and focus, and decrease appetite and food intake [62-64]. Both AMPH and METH 

have strong reinforcing properties evidenced in self-administration animal studies [65, 66] and 

high abuse liability assessed by intracranial self-stimulation (ICSS) [60]. Their primary effect is 

through DAT, demonstrated in DAT knock-out or knock-down mice who exhibit reduced or no 

sensitivity to the psychostimulants [16, 18, 67-70]. Using in vitro synaptosomal release studies, 

both compounds are shown to release all monoamines; however, they exhibit much greater potency 
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for DA and NE than 5-HT [46]. AMPH and METH appear to be substrate to hDAT as they induce 

inward current through the transporter at physiological potential. In addition, the S- enantiomers, 

S-AMPH and S-METH, produce an inward persistent current at hDAT after their wash out [2, 6]. 

AMPH’s and METH’s intake can results in schizophrenia-like symptoms and fatal toxicity [71]. 

Paradoxically, AMPH appears useful in the treatment of conditions such as attention-deficit 

hyperactivity disorder (ADHD), narcolepsy, and obesity [72-74]. 

1.5.2. Synthetic cathinones 

The beta-keto amphetamine, cathinone (CATH), is the primary active ingredient of the 

khat plant (Catha edulis) found in East Africa and the Arabian Peninsula [75]. Fresh leaves of this 

shrub contain CATH, which is often referred to as a “natural amphetamine” since it possesses 

amphetamine-like psychostimulant properties. The synthetic cathinones appear under numerous 

names (bath salts, plant food, insect repellant, and brand names such as red dove, zoom, ivory 

wave, vanilla sky etc) [76, 77]. Similar to AMPH, cathinone derivatives have psychoactive effects 

due to their action at the monoamine systems [75, 78-80]. In drug discrimination studies, CATH 

and N-methylated cathinone, methcathinone (MCAT), substitute for AMPH and METH and 

exhibit greater potency than METH or AMPH, with MCAT being more potent than CATH [79]. 

MCAT releases DA similar to AMPH and facilitates intracranial self-stimulation studies (ICSS) 

which shows its high abuse liability [3, 81]. A para-methylated MCAT, mephedrone (MEPH), is 

another cathinone derivative that has gained popularity in recent years in Europe and USA [78, 82, 

83]. In vitro synaptosomal uptake inhibition studies and in vivo microdialysis and intracranial self-

stimulation (ICSS) studies in rat brain reveals a mixed effect at both serotonergic and 

dopaminergic systems [3, 84]. Electrophysiological assays additionally imply that MCAT and 
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MEPH are substrates for DAT as they induce inward currents at physiological potentials under 

voltage clamp conditions [1, 6]. Similar to S-AMPH, the two cathinones S-MCAT and MEPH 

elicit persistent current, IPC, at hDAT which we hypothesize alters subsequent DA exposure at 

DAT and neuronal excitability [1, 2, 6]. 
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1.6. DAT reuptake inhibitors 

Cocaine (COC) is a naturally occurring alkaloid from the Erythroxylon coca plant abused 

for many years due to its psychostimulant effects [85]. Cocaine has several different target proteins 

in the brain such as DAT, SERT, norepinephrine transporter (NET), sodium channels and perhaps 

others [17, 86]. For many years the mechanism for its strong reinforcing effects was unknown. In 

the 1987 publication of Ritz et al., cocaine was identified to exhibit its action mainly through 

binding to DAT and inhibition of DA uptake in rat striatal tissue [17]. In behavioral animal studies, 

lesions in the mesolimbic dopaminergic projection inhibited self-administration of cocaine in rats 

[17]. Similar to STPs, such as AMPH, COC increases DA extracellular levels. Unlike STPs, 

however, COC is not transported into the cell but rather exerts its actions through a blockade of 

the transport pathway within DAT. This “cork in a bottle” mode of action results not only in uptake 

inhibition and increased DA synaptic levels but also in reduction/elimination of ionic fluxes 

through the transporter [1, 6, 23]. Current recordings in voltage clamped Xenopus oocytes reveal 

COC blocks IL, which is present in DAT in the absence of substrate. Furthermore, COC also 

inhibits IDA, ISTP, and IPC [1, 6, 23]. COC’s block of inward constitutive leak and substrate-induced 

peak currents, as mentioned previously, appears as an outward deflection of the current trace under 

voltage clamp conditions. 

Physiological and anatomical changes ensue upon repeated cocaine exposure. Chronic 

cocaine administration in rats causes an increase in dendrite branching and spine density in the 

nucleus accumbens [62, 87]. Furthermore, prolonged exposure to cocaine in animals (rats, rhesus 

monkeys etc.) shows increased H3DA uptake but unchanged Km indicative of DAT insertion in the 

plasmalemmal membrane from the endosomal recycling pool, a finding substantiated in 
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postmortem human cocaine addict subjects [39, 88]. Uptake inhibitor induced up-regulation is 

opposite to the effect observed with substrates, which result in DAT down-regulation. 

A synthetic cathinone, 3,4-methylenedioxypyrovalerone (MDPV) has gained tremendous 

popularity and is now a Schedule I drug as of October 2011 [89]. It is a central stimulant that, 

unlike CATH or MCAT, increases DA by acting as a reuptake inhibitor similar to COC [1, 6, 90]. 

Fatal overdoses of MDPV and its dominance in the seized bath salts mixtures have brought 

attention to its exact mechanism of action [91].  
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1.7. DA transients in the action of abused drugs 

Electrophysiological studies of excitability in dopamine neurons show a unique action 

potential (AP) waveform: a long AP duration and a pronounced after AP hyperpolarization [92]. 

These neurons have a tonic (pace-making) activity (2-10 Hz) and a phasic or burst activity (15-30 

Hz) [92]. The tonic activity gives rise to background levels of DA in the 5-20 nM range, while the 

bursting events raise extracellular levels of neurotransmitter to the low micromolar range [93]. 

When association between cues and reinforcers is established (both natural and drug related 

reinforcers) the cues stimulate burst firing and phasic DA release.  The burst firing and transient 

extracellular DA augmentations require activation of high-voltage activated Ca2+ channels which 

in turn leads to calcium-activated potassium channel opening to end the bursting activity [94]. 

These DA transients are observed in expectation of natural rewarding experience or upon 

unexpected reward delivery and are associated with goal-directed behaviors. In addition, after 

reward delivery, there is a second effect that depends on the reward prediction error [95]. If the 

reward prediction error is positive, the expected reward is smaller than the obtained (better than 

expected), an additional increase of firing above the tonic level is observed. Negative reward 

prediction error, the expected reward is greater than what is obtained (worse than expected), causes 

a transient pause or silencing below the tonic level in neuronal firing results [96]. This reward 

prediction error is used to modulate reward expectations and it plays a role in the synaptic 

rearrangement to strengthen or weaken glutamatergic and GABAergic synapses onto 

dopaminergic neurons. 

Using in vivo microdialysis, increases in extracellular DA levels due to phasic/burst firing 

are measured and compared to the tonic basal levels. Studies employing this technique reveal the 

action of abused psychostimulants to cause dramatic augmentations in DA in the NAcc, much 
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greater than natural rewards (food, sex). The exaggerated rise of DA is absent when drugs with no 

abuse liability are administered to the tested subjects. Often there is a cross talk between 

psychostimulants and several different cellular targets. For example, METH can release both DA 

and 5-HT; however, the selectivity for one neurotransmitter over the other is of great importance. 

Monoamine releasers with greater selectivity for DA over 5-HT produce more abuse-related 

behaviors, hence, the and the ratio of extracellular concentration of DA/5-HT is established as a 

good indicator for abuse liability [46, 97-99]  
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1.8. Ca2+ channels and excitability 

Voltage-gated ion channels play a major role in many excitable cells: they do not only 

affect the membrane potential of the cell but also trigger a number of other effects such as 

neurotransmitter release, gene expression, certain kinases activation etc. [100]. The L-type Ca2+ 

channels (CaV1) are important modulators of signal transduction and excitability in excitable cells 

[94, 101, 102]. Their current is distinguished by large single channel conductance (compared to 

the other types of CaVs), high voltage of activation, and slow voltage inactivation hence it is long 

lasting [103]. They are localized primarily in the cell bodies and dendrites of neurons as compared 

to CaV2 (N, P, Q-types) which are located in synaptic densities and involved in vesicular fusion 

[104]. The N-type of CaVs (Cav2.2) have an intermediate rate of inactivation compared to other 

Cav types, however the voltage dependence and current can be highly variable depending on the 

subunit composition and neuronal identity [103, 105]. While Cav2.2 are reported to directly 

interact with SNARE proteins and entry of Ca2+ through the channels triggers vesicular fusion,  

CaV1.3 is implicated in pace-maker neurons, including some dopaminergic neurons and 

neuroendocrine cells like adrenal chromaffin cells [106, 107]. Since L-type Ca2+ channels (CaV1.2 

and CaV1.3) are co-expressed with monoamine transporters in several types of excitable cells [94, 

108], determining a functional interaction between these two classes of proteins could constitute 

an additional molecular mechanism of STP action. Previous studies using HEK 293 coexpression 

of L-type Ca2+ channel CaV1.3 or N-type Ca2+ channel CaV2.2 and hSERT show there is electrical 

coupling between the CaV1.3 and hSERT which was not observed with CaV2.2 and hSERT under 

the same conditions [109].  
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1.9. The objective of the present study 

The overall goal of our studies was to elucidate the biophysics of reuptake inhibitors and 

STPs as they modulate the function of DAT and to uncover their physiological relevance in 

neuronal excitability. We specifically focused on two crucial elements of STP mechanisms: 1) 

characterizing the biophysical properties of ISTP and IPC, and 2) measuring the effect of ISTP and 

IPC on excitability in dopaminergic neurons. We hypothesized that the long-lasting IPC will cause 

a moderate but persistent depolarization in DA neurons that will prolong neuronal depolarization 

and increase both excitability and vesicular DA release, thereby raising synaptic DA concentration 

and increasing reward-directed behavior.  
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Chapter 2 MATERIALS AND METHODS 

 

 

 

2.1. Expression of hDAT in Xenopus oocytes 

Oocytes were harvested and prepared from adult female Xenopus laevis following standard 

procedures [110]. Stages V–VI oocytes were selected for cRNA injection within 24 h of isolation. 

cRNA was transcribed in the pOTV oocyte transcription vector (gift of Mark Sonders, Columbia 

University) using Ambion mMessage Machine T7 kit (Ambion Inc., Austin, TX, USA). Each 

oocyte was injected with 40 nL of 1 μg/ μL hDAT cRNA (final amount 40 ng) (Nanoject 

AutoOocyteInjector, Drummond Scientific Co., Broomall, PA, USA) and incubated at 18°C for 

6–10 days in Ringers solution supplemented with NaPyruvate (550 μg mL−1), streptomycin 

(100 μg mL−1), tetracycline (50 μg mL−1) and 5% dialyzed horse serum. 

2.2. Two-electrode voltage clamp 

Electrodes had resistances from 1 to 3 MΩ. Xenopus oocytes expressing hDAT were 

voltage clamped to −60 mV (unless otherwise noted), and buffer was gently perfused until a stable 

baseline was obtained, then the experimental substrates were perfused until stable currents were 

obtained, or for time periods indicated. The voltage clamp apparatus used for these experiments 

was a Gene Clamp 500 Amplifier and a 16 bit A/D converter (Digidata 1320A, Axon Instruments). 

Data were sampled at 5 kHz and digitally stored for off line analysis using Clampfit 10.2 software 

and 1-kHz filtering. Inward and outward drug-induced currents were compared with holding 
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currents required for voltage clamp at −60 mV in the absence of drugs. Currents varied in size; 

however, oocytes with −20 to −60 mV resting potentials and 10 µM DA responses of 20 nA to 100 

nA were selected for the analysis. To measure drug-induced I(V) curves, we first generated an I(V) 

curve for buffer without drug, which we then subtract from I(V)s for buffer with drug. Buffer 

subtracted I(V) curves for 10 mM DA, MEPH-peak, MDPV and COC were generated under 

voltage clamp between −100 and +20 mV. To normalize I(V) curves, we set the 10 μM DA-

induced current to 100 at −100 mV in each oocyte [1, 2]. 

2.3. Solutions for Xenopus oocytes  

Extracellular (in mM): 120 NaCl, 7.5 HEPES, 5.4 K Gluconate, 1.2 Ca Gluconate, 

pH adjusted to 7.4 with NaOH. Intracellular electrode: 3 M KCl. The speed of solution exchange 

was 4 mL min−1. No drug used in this study had any effect in non-injected oocytes (data not 

shown). See also Rodriguez-Menchaca et al [2]. 

2.4. Materials  

Mephedrone and 3,4-methylenedioxypyrovalerone (MDPV) were prepared as their 

hydrochloride salts and purified to homogeneity. S(+)Methamphetamine and S(−)methcathinone, 

as their hydrochloride salts, were available from a previous investigation and were purified to 

homogeneity. Cocaine hydrochloride was obtained from the NIDA drug supply program. 

2.5. Culture of HEK 293 cells 

Transiently expressed hDAT HEK 293 cells (HEKhDAT cells) were prepared in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-

glutamine, penicillin (100 units/ml), and streptomycin (100 g/ml) [111]. Wild type hDAT cDNA 
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subcloned in pIRES2 DsRED-Express2 (Clontech) were used to transfect HEK 293 cells via 

lipofectamine 2000 (GIBCO BRL). Cells were grown for 48-72 h before measurements. Since 

expression plasmid codifies the red fluorescent protein (DsRED) the transfected cells were 

identifiable at the red channel: excitation 550/15 nm and emission 620/60 nm. 

2.6. Generation of Flp-In Trex cells expressing hDAT 

The generation of the hDAT stable inducible cell line (FlphDAT) was done using the Flp-

InTm T-RexTM 293 system (Invitrogen). The hDAT cDNA (accession number: NM_001044) was 

subcloned into pcDNA5/FRT/TO plasmid and the targeted recombination and cell selection were 

performed as described previously [112]. Flp-hDAT cells were grown in Dulbecco’s modified 

Eagle medium supplemented with 10% fetal bovine serum. hDAT expression was induced with 

doxycycline (1μg/ml) at least 3 days before each experiment. The Ca2+ channels used in this study 

were CaV2.2 (α1B, Addgene #26570), CaV1.3 (α1D, Addgene # 26571), CaV1.2 (α1C accession 

number: NM_001136522), β3 (Addgene #26574) and α2δ1 (Addgene #26575). All plasmids were 

kindly provided by Dr. Diane Lipscombe (Department of Neuroscience, Brown University, 

Providence, Rhode Island, USA) except CaV1.2 that was kindly provided by Dr. Manfred Grabner 

(Department of Medical Genetics, Molecular, and Clinical Pharmacology, Innsbruck Medical 

University, Innsbruck, Austria). The CaV1.2 cDNA was subcloned into pcDNA6 expression 

plasmid thus all α1 subunits are expressed under the same background vector. In addition EGFP 

expression plasmid was used as transfection marker. The cells were co-transfected with the DNA 

ratio α1:β3:α2δ1:EGFP=1:1:1:0.2 using Fugene 6 (Promega) as transfection reagent.  

2.7. Whole cell patch clamp and electrophysiological recordings 
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Cells were cultured on 12 mm round glass coverslips (Fisher Brand) for 1-2 days before 

measuring currents. Coverslip was placed on a stage of Olympus IX50 inverted microscope for 

whole cell recording configuration. Patch pipettes with resistance ranging from 3 -6 MΩ made 

from borosilicate glass capillary tubing and coated with Sylgard (Dow Chemicals) were filled with 

133 K Gluconate, 5.9 NaCl, 1 CaCl2, 0.7 MgCl2, 10 EGTA, 10 HEPES, pH adjusted to 7.2 with 

KOH. The cells were continuously superfused with external solution containing 130 NaCl, 4 KCl, 

2 CaCl2, 1 MgCl2, 10 HEPES, 10 Glucose, pH adjusted to 7.4 with NaOH. Patch clamp recording 

at T=35°C (AutoMate Scientific) were performed using an Axopatch 200A amplifier (Molecular 

Devices) and currents were acquired using Clampex 8.2 software (Molecular Devices). The 

voltage was clamped at −60 mV unless otherwise noted and drugs were applied for 5 s at various 

concentrations following a 30 µM DA pre-pulse. Current traces were acquired at 1 kHz.  Holding 

currents for all traces were subtracted and DA pre-pulse was normalized to 1 for cell to cell 

comparison. 

2.8. Experimental solutions 

Extracellular (in mM): 130 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 Glucose, pH 

adjusted to 7.4 with NaOH. Intracellular electrode: 133 K Gluconate, 5.9 NaCl, 1 CaCl2, 0.7 

MgCl2, 10 EGTA, 10 HEPES, pH adjusted to 7.2 with KOH.  

For Ca2+-free imaging recording we used the following extracellular solution (in mM): 130 

NaCl, 4 KCl, 2 MgCl2, 10 HEPES, 10 Glucose, 2 EGTA, pH adjusted to 7.4 with NaOH.  

2.9. APP+ uptake assay 
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4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+), a fluorescent substrate of 

hDAT, was used to monitor hDAT activity by fluorescence microscopy as previously described 

[111]. Cells grown on 96 well imaging plates were placed on the stage of the fluorescence 

microscope describe above. The wavelengths used to detect the APP+ signal were 460/10 nm for 

excitation and 535/50 nm for emission. 

2.10. Ca2+ current-voltage dependence determination 

The Ca2+ currents were determined in HEK 293T cells transfected with CaV1.2, CaV1.3 or 

CaV2.2 as described previously [112]. The external solution used was (in mM): 155 

tetraethylammonium (TEA)-Cl, 5 CaCl2, 10 Hepes, pH 7.4 with TEA-OH. The internal solution 

composition was (in mM): 130 CsCl, 10 Cs-EGTA, 1 CaCl2, 4 MgATP and 10 HEPES, pH 

adjusted to 7.3 with CsOH. The effective serial resistance was corrected to 80% using the built-in 

circuit of the Axopatch 200B amplifier. The leak current was subtracted using a –P/6 protocol. The 

microelectrodes were made from 8520 glass capillary (Warner Instruments, #64-0817), fire 

polished, and Sylgard coated. The electrodes tip resistance was ~2.5 MΩ when filled with the 

internal solution.  

2.11. Intracellular Ca2+ determination 

The intracellular Ca2+ determinations were done using the Ca2+ sensitive dye Fura-2AM 

and visualized in an epifluorescence microscope following the procedure and using the equipment 

described previously [112]. The measurements were done at constant perfusion at 35°C. The Fura-

2 signal was acquired switching the excitation wavelength between 340/10 to 380/10 nm using a 

monochromator as described previously [112], dichroic mirror 490LP and an emission filter 
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510/40 nm. The acquisition frequency was 1Hz. All images were background subtracted and the 

Ca2+ signals are shown as F340/380/F0. In the case of dose-response experiments the test values were 

normalized by the mean of the maximal value of control DA pre-pulse. 

2.12. Immunofluorescence 

Sample fixation and labeling was performed as described earlier [113]. The primary 

antibodies used were rat monoclonal anti-DAT (Santa Cruz Biotechnology, Cat# sc-32258) with 

secondary antibody used Alexa Fluor 555 goat anti-rat IgG (Invitrogen, Cat# A21434) and primary 

rabbit polyclonal anti-Pan NaV (Alomone Labs, Cat# ASC-003) with secondary antibody Alexa 

Fluor 488 goat anti-rabbit IgG (Invitrogen, Cat# A11008). The nuclei were stained with DAPI. 

The specimens were visualized either in a Zeiss 710 confocal microscope.  

2.13. Western Blot 

Total protein extracts were run in SDS-PAGE in duplicates. One gel was stained with 

Coomasie blue staining for total protein visualization and the other was electrically transferred to 

a PVDF membrane. To detect hDAT expression, the membrane was incubated in anti-hDAT 

monoclonal rat antibody and then exposed to secondary antibody conjugated with horseradish 

peroxidase. The hDAT band was visualized by chemiluminescence using RapidStep ECL Reagent 

(Calbiochem) and the images were acquired in a digital imaging system (FluorChem E, Protein 

Simple, Santa Clara, CA). 

2.14. Maintaining LUHMES  
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Nunclon (Nunc, Roskilde, Denmark) plastic cell culture flasks and multi-well plates were 

pre-coated with poly-ornithine 50 µg/mL overnight. After H2O wash and dry, 1 µg/mL fibronectin 

was applied for 3 hrs. (Sigma-Aldrich, St. Louis, MO, USA). After removal of the coating solution, 

culture flasks were washed once with H2O and air-dried before cell seeding. Proliferation medium 

consisted of Advanced Dulbecco’s modified Eagle’s medium/F12 supplemented with 1% N-2 

supplement (Invitrogen, Karlsruhe, Germany) and 40 ng/mL recombinant basic fibroblast growth 

factor (bFGF) (R&D Systems, Minneapolis, MN, USA). For differentiation, we used F12, 1% N-

2 supplement, 1 mM dibutyryl cAMP (Sigma-Aldrich), 1µg/mL tetracycline (Sigma-Aldrich) and 

2 ng/mL recombinant human GDNF (R&D Systems) [114].  

2.15. Quantitative PCR 

Total RNA was prepared with TRIzol (Invitrogen), and 1 μg RNA was reverse-transcribed 

with a High Capacity cDNA Archive kit (Applied Biosystems). The abundance of mRNA levels 

was assessed with premixed primer-probe sets and TaqMan Universal PCR Master Mix (Applied 

Biosystems). The cDNA for the target genes was left undiluted while the gene encoding GAPDH 

was diluted 10x and then was amplified with an ABI 7900HT cycler. Gene expression was 

normalized to that of the gene encoding GAPDH [115]. 

2.16. Statistics 

 Summary TEVC and patch clamp data are reported as mean ± SEM; n denotes the number 

of cells and each cell tests one condition. Mean currents are expressed as test current normalized 

to DA pre-pulse to account for differences in hDAT expression level. Statistical analysis was 

executed using Origin 8 and Prism 5 (GraphPad).   
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Chapter 3 RESULTS 

 

 

 

 

3.1. Conduction states in hDAT  

3.1.1. Structures  

Figure 5 shows the chemical structures of DA, as well as S-, and R- stereoisomers of 

AMPH, S-METH, S-CATH, S-MCAT, MEPH, MDPV, and COC. The top row compares the 

structures of the most commonly used psychostimulants for the treatment of ADHD and 

narcolepsy. It also illustrates the spatial orientation differences in the enantiomers of AMPH as 

well as S-METH. The bottom row shows the chemical structures of synthetic analogues of the 

naturally occurring cathinone: MCAT, MEPH, and MDPV. All of these compounds are analogous 

to AMPH or METH with the addition of a β-keto group. The cathinone analogues are components 

of bath salts which is common drug mixture with extensive web-based marketing [77, 116]. It is 

noteworthy that drugs found on the clandestine market are racemic mixtures comprised of equal 

amounts of their S- and R-enantiomers. On the other hand, pharmaceutical compounds are 

composed of specific ratios of enantiomers as in Adderall which is composed of 75% S- and 25% 

R-AMPH and is used to treat ADHD and narcolepsy [51, 117]. 
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Figure 5: Chemical structures of DA and STPs Top row shows structural similarities among 

DA and the S- and R- isomers of AMPH and METH. Bottom row compares chemical structures 

of S-CATH and the cathinone analogues S-MCAT, MEPH, and MDPV which are common 

ingredients of bath salts. 
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3.1.2. Dopamine, STPs, and reuptake inhibitors differentially affect hDAT  

Figure 6 displays currents elicited by the compounds illustrated in Fig 5. Xenopus oocytes 

expressing hDAT were exposed to substrates and reuptake inhibitors (10 µM, a saturating 

concentration, -60 mV) for 1 min. Room temperature perfusion of DA stimulated an inward current 

(IDA) that rapidly decayed to the original baseline upon wash out. Under the same conditions, all 

STPs S-AMPH, R-AMPH, S-METH, S-MCAT, and MEPH induced a qualitatively similar inward 

peak current (ISTP). Intriguingly, a persistent current was observed for minutes after STP removal 

(IPC) in all S-isomers (S-AMPH, S-METH, S-MCAT) and the racemic MEPH. The IPC/ISTP ratio 

varies widely among compounds. All traces of STPs are normalized to ISTP=1 for visual 

comparison. The reuptake inhibitors COC and MDPV evoked outward currents which are actually 

the inhibition of an inward constitutive leak current (IL) through hDAT [1, 6, 23]. MDPV produced 

a larger outward current deflection as compared to COC, indicating that COC does not fully inhibit 

the leak through hDAT. Figure 7 is illustrative of the response of STPs used in this study. 
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Figure 6: DA, STP, and reuptake inhibitor-induced currents at hDAT Sample currents 

generated in hDAT by 60 s. application of 10 μM dopamine (DA), S-amphetamine (S-AMPH), 

R-amphetamine (R-AMPH), S-methamphetamine (S-METH), S-methcathinone (S-MCAT), 

mephedrone (MEPH), cocaine (COC), and 3,4-methylenedioyyrovalerone (MDPV) at −60 mV. 

All STP traces are normalized to the same peak size for comparison. COC and MDPV of 

oocytes with similar DA pre-pulse were used to illustrate the different levels of inhibition of 

the two compounds. 
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3.1.3. The potency and efficacy of ISTP at hDAT varies 

In order to study STP’s ability to induce hDAT currents we conducted dose-response 

studies (Figure 7). hDAT-expressing oocytes were exposed to 10 µM DA pre-pulse followed by 

various drug concentrations at −60 mV. In Figure 7, summary of drug-induced responses are 

represented as a percentile of 10 µM DA pre-pulse (DA= 100%). All examined STPs were in their 

more potent S-stereoisomer form with the exception of MEPH (the racemate was used, as in 

clandestine samples) [80, 118]. Dose response curves were fit to Hill 1 equation using Origin 8: 

𝑦 = 𝑆𝑇𝐴𝑅𝑇 + (𝐸𝑁𝐷 − 𝑆𝑇𝐴𝑅𝑇)
𝑥𝑛

𝑘𝑛 +  𝑥𝑛
 

where x is the concentration of the tested compound, Y is the response measured, START is min 

response and END is the maximal response, k is the concentration that yield half–maximal 

response, and n is the Hill slope parameter. 

The order of potency (EC50) was S-MCAT (0.23 ± 0.03 μM, n=5) > S-METH (0.64 ± 0.15 

μM, n≥5) > MEPH (0.84 ± 0.14 μM, n=5) > S-AMPH (1.21 ± 0.15 μM, n≥5, data not shown). In 

terms of efficacy, S-AMPH (118 ± 7%, n≥5, data not shown) and S-METH (107 ± 6%, n≥5) 

produced the greatest inward current followed by S-MCAT (57±1%, n=5) and MEPH (41 ± 1%, 

n=5). An important note here in comparing these values is that MEPH used was a racemic mixture 

(50% S- and 50% R- enantiomer), therefore the values for EC50 and Vmax obtained from this studies 

are likely right and down shifted respectively.  Here we did not explore STP’s ability to induce 

IPC: that will be investigated in later section. 
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Figure 7: Dose-response curves of STPs (Figure adapted from [6]) Dose–response curves 

(±SEM) for S-METH, S-MCAT, and MEPH in hDAT expressing Xenopus oocytes at −60 mV. 

Data points were obtained by exposing hDAT-expressing oocytes to different concentrations 

of drug for 1 min and normalizing peak currents to a 10 µM DA pre-pulse (n ≥ 5).  
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3.1.4. Difference in efficacy but not potency of MDPV and COC to inhibit constitutive hDAT 

current  

 As seen in Figure 6, unlike other tested cathinone analogues MDPV did  not produce an 

inward peak current. In contrast, MDPV induced an outward current similar to that observed with 

COC, which indicated that MDPV is not transported but, rather, it is a reuptake inhibitor. 

Compared with COC, we observed a larger outward current upon application of MDPV and 

constructed a full dose-response curve for hDAT constitutive leak inhibition for both (Figure 8). 

MDPV was more efficacious than COC  in inhibiting hDAT’s constitutive leak current (32.9 ± 1.9 

and 24.6 ± 0.5 % of DA pre-pulse respectively, n=5). Interestingly, both compounds had similar 

potency (0.33 ± 0.07 μM and 0.30 ± 0.04 μM respectively, n=5) to inhibit hDAT’s endogenous 

leak, IL. Because these reuptake inhibitors inhibit different magnitude of leak currents, we may 

think of them as full or partial inverse agonists when discussing hDAT-induced currents. 
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Figure 8: COC and MDPV dose-response curves (Figure adapted from [6]). Different 

concentrations of MDPV or COC were applied to hDAT-expressing Xenopus oocytes voltage 

clamped at −60 mV (n=5 for each concentration). Drug responses are normalized to a 10 µM 

DA pre-pulse. 
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3.2. Action of reuptake inhibitors at hDAT 

3.2.1. Reuptake inhibitors block different levels of hDAT’s constitutive leak current  

In Figure 6 and Figure 8 we see the synthetic cathinone MDPV induces a larger upward 

current deflection than COC. As mentioned previously, reuptake inhibitors do not produce a net 

outflow of positive charge at -60 mV; rather, they decrease the net inward current through hDAT. 

Because a larger outward deflection occurs upon blockade by MDPV, we conclude that COC does 

not block all of the constitutive leak. To eliminate possibility of endogenous oocyte conductance 

inhibition by the blockers, both COC and MDPV were applied to uninjected oocytes: no deflection 

from original baseline current level was observed in either case (data not shown). 
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3.2.2. MDPV has the electrophysiological signature of a tight binding reuptake inhibitor  

To compare the potency of COC and MDPV to inhibit IDA, we competed 5 µM DA with 

various concentrations of the two compounds (Figure 9A and 9B, respectively). Both compounds 

either reduced or eliminated the dopamine-induced current. Interestingly, while COC application 

inhibited IDA within 15-30 s., MDPV blockade of the dopamine-induced inward current never 

reached a steady state within the timeframe of the experiment which made it impossible to obtain 

an IC50 value for MDPV.  For the high concentrations (10 µM), steady state was achieved within 

15 s. Lower concentrations of MDPV (0.5 µM) reached steady state at 5 min post application (see 

slow inhibition of DA-induced current in panel B).   
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Figure 9: COC and MDPV blockade. (Adapted from [6]) Xenopus oocytes voltage clamped 

to −60 mV A) Raw traces for cocaine (COC) dose–inhibition curve: 5 μM dopamine (DA) 

applied for 30 s (solid line) followed by perfusion of 5 μM DA plus various concentrations of 

COC (dashed line). B) Raw traces for MDPV dose–inhibition under the same conditions as A. 

Unlike COC, MDPV inhibition did not reach a steady state level within 1 min. The inhibitory 

effect at all MDPV concentrations persisted until maximum inhibition was reached (for the 

lowest concentrations, 0.5 μM, it takes more than 5 min to reach steady state; in contrast, the 

highest concentration of MDPV (10 μM) reaches the steady state in 15 s).  
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3.2.3. Time course of COC and MDPV block in oocytes  

In Figure 10A, 10 µM MDPV was applied during 10 µM MEPH-induced IPC. After MDPV 

was removed, the baseline remained elevated (block of hDAT’s constitutive leak) for an extended 

period of time. Under the same conditions, 10 µM COC caused a block of hDAT currents only for 

the duration of its application (Figure 10B). To better characterize the differences between these 

two reuptake inhibitors, we designed a protocol to quantify DAT’s recovery after exposure to the 

blocker. We applied a 30 s DA pre-pulse to estimate DAT’s expression level. Next, we applied 

either COC or MDPV for 1 min to block the constitutive leak current. Finally, to monitor recovery 

after block, we measured the DA-induced current at 1, 5, 10, 15, 20, 25, and 30 min following 

blockade. To account for transporter down-regulation due to numerous substrate applications, we 

did a control measurement without blocker and applied DA pulses at the same time points as in 

the experiment shown in Figure 10C-D. The observed decrease in the IDA control was used to 

normalize the results in the blocker-applied measurements. Raw traces for each blocker are shown 

in Figure 10C. Each experiment was repeated three times at each concentration. The summary plot 

shown in Figure 10D illustrates the dramatic differences in the time course of inhibition of MDPV 

compared with COC. Whereas all MDPV concentrations tested caused at most 10% recovery of 

hDAT currents 1 min post blocker application, all COC concentrations tested showed immediate 

recovery at equivalent time points. MDPV’s action was difficult to wash off on this time scale and 

even 30 min after inhibition, only 40% recovery occurred following blockade at lower 

concentrations (1 and 3 µM) and only 20% recovery occurred after 10 µM MDPV. Although 

modest recovery from MDPV begins at 10 min, we cannot distinguish between hDAT recovery 

and new copies of hDAT inserted into the membrane. Because uptake inhibitors up-regulate 
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hDAT, the recovery after MDPV block may be due to new hDATs inserted into the membrane, 

which correlates with recovery after COC block. 
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Figure 10: MDPV and COC blockade reversibility. (Adapted from [1]) Panels A) and B) 

show raw traces of 60 s blocker application (MDPV or COC, 10 µM) during IPC induced by 60 

s MEPH external application (10 µM) at V = -60 mV C) At V = -60 mV, 30 s exposure of 10 

µM DA is followed by 60 s application of 10 µM COC (top) or MDPV (bottom). 30 s pulses 

of DA follow the block at time in min: 1, 5, 10, 15, 20, 25, 30 (25 and 30 min not shown) D) 

Cumulative data from C), n = 3. Recovery of IDA after block is plotted on the y-axis. One minute 

after COC treatment (10 and 30 µM), the DA-induced current recovers completely. One minute 

after MDPV treatment (1, 3, 10 µM), the DA-induced current recovers only 10% of its initial 

value. At 30 min, recovery from MDPV is 50, 50 and 20%, respectively. 
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3.2.4. MDPV reversibility in mammalian expression system  

We tested MDPV’s long lasting effect at hDAT expressed in HEK 293 cell at physiological 

temperature (T= 37ºC) using fluorescent microscopy. First, 2 µM APP+ was applied for 3 min to 

establish a stable rate of uptake. Next, either 10 µM DA (black trace) or MDPV (red trace) was 

applied to compete the APP+ uptake (flat portion of Figure 11A). Lastly, 2 µM APP+ was reapplied 

to monitor the off rates of DA and MDPV. We define full recovery as rate of uptake after block 

being equal to the pre- DA and pre-MDPV rate of uptake. For times greater than 400 s, the two 

traces in Figure 11B have different shapes, illustrating the differences in off rates of each 

compound. Since we cannot determine the exact recovery point, we show the same data in 11A 

but converting APP+ uptake into rate of uptake by taking the 1st derivative of the two traces. Figure 

11B compares the rates of APP+ uptake following DA and MDPV application. Arrowheads 

emphasize rate differences between the two drugs. This distance between the arrowheads indicate 

300 s or 5 min; that is, it takes 5 min for hDAT to recover after MDPV block vs. 30 s after DA 

inhibition of APP+ uptake. The inhibitory effect in oocytes is at least 6 times longer than in HEK 

293 cells. However, there are a few differences that can account for the differences. First, we have 

different expression systems with difference in membrane and protein composition. In addition, 

the perfusion in oocytes is at room temperature while the HEK 293 cells is at 35ºC. Furthermore, 

in oocytes, we measure IDA to determine hDAT function recovery at -60 mV, while in HEK 293 

cells we monitor the ability of hDAT to transport fluorescent substrate APP+ without voltage 

clamp. 
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Figure 11: MDPV long action in hDAT expressing HEK 293 cells A) 2 µM APP+ is applied 

for 3min to hDAT expressing HEK 293 cells, T= 37ºC to establish a stable uptake rate. Either 

10 µM DA (black trace) or MDPV (red trace) is then applied with 2 µM APP+ to observe the 

competitive inhibition of the fluorescent substrate. Following the inhibition, APP+ was 

reapplied for 10 min to observe the off kinetics of DA and MDPV B) To quantify the difference 

of off kinetics of DA and MDPV, rate of uptake (1st derivative) of APP+ uptake was plotted 

against experiment progress in time. 
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3.2.5. Action of bath salts mixture  

 In the past few years, a number of synthetic cathinones have invaded the clandestine market 

[83] under the name bath salts. In most samples a mixture of several compounds was identified, 

including cathinone analogues, cocaine, caffeine, THC, and other compounds [83]. MEPH and 

MDPV are among the more popular ingredients (Fig. 1) and were placed on Schedule I in October 

2011 [89]. Bath salts are easily obtainable in head shops and on the Internet in packages clearly 

mislabeled as: “bath salts not for human consumption”, “research chemicals” or “plant food” [75, 

77, 116]. We investigated the effect of MEPH and MDPV together, as might be expected for bath 

salts samples. Figure 12 shows currents in hDAT-expressing oocytes voltage clamped at -60 mV. 

Different ratios of MEPH/MDPV were continuously perfused for the entire duration of the 

experiment. From top to bottom the ratios of MEPH/MDPV (in µM) are 1/19, 5/15, and 15/5. In 

mixtures composed predominantly of MEPH (lowest trace), we observed initial large size inward 

current that eventually reversed as the comparatively lower concentration MDPV blocked hDAT. 

In mixtures composed predominantly of MDPV (top trace), the effect is essentially a long-lasting 

inhibitory current. The kinetics of MEPH are more rapid than the kinetics of MDPV in terms of 

their ability to either elicit or block current through hDAT. We hypothesize that in vivo, assuming 

equal concentrations of both compounds in the brain, there could be a reinforcement of DA for 

bath salts abusers caused by: 1) exocytotic release due to MEPH-induced transient depolarization, 

and 2) retention of DA in the synapse due to long-lasting MDPV block of hDAT. 
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Figure 12: Bath salts currents hDAT currents induced by continuous exposure of different 

proportions of bath salts components in hDAT expressing oocytes, V = -60 mV: MEPH/MDPV 

(substrate/blocker) (in mM): 1/19, 5/15 and 15/5 (n = 3, grey color represent SEM). 

1 MEPH/ 19 MDPV 

5 MEPH/ 15 MDPV 

15 MEPH/ 5 MDPV 
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3.3. STP-induced persistent current at hDAT 

3.3.1. IPC is dependent on intracellular STP concentation  

In Figure 13A we see raw traces from hDAT expressing oocytes voltage clamped at -60 

mV. External 10 µM S-AMPH perfusion induced an ISTP that returned to baseline after 30 s 

application.  However, longer exposures to S-AMPH caused a persistent current after drug 

removal. The longer duration of S-AMPH application, the greater the amplitude of IPC suggesting 

that internal accumulation of S-AMPH might be imparing normal hDAT function and not allowing 

it to close; hence, we named S-AMPH action a ‘molecular stent’ within the transporter. IPC does 

not only depend on the duration of STP application but also on its concentration (Figure 13B). 

Exposure to 10 µM S-AMPH for 20 s did not produce IPC in Figure 13B, while 20 s. exposure of 

30 µM S-AMPH induce a pronounced persistent current. This suggests again that IPC is due to S-

AMPH accumulation, and it acts at an intracellular site. To directly test our ‘internal action’ 

hypothesis, we titrated vaious concentrations and/or volumes of S-AMPH into hDAT expressing 

oocytes voltage clamped to -60 mV. DA-induced hDAT current swiftly and consistently returned 

to the original baseline prior to STP exposure (Figure 13C, left trace). Prior to injection of S-

AMPH inside of the oocyte, DA external application produced IDA; however, after injection of S-

AMPH a persistent current was observed after DA wash-out. We were able to affect the IPC 

magnitude by either repeated injections of the same concentration or by using a single higher 

concentration injection of S-AMPH, therefore confirming the involvement of internal S-AMPH in 

the IPC phenomenon [2]. 
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Figure 13: IPC is time and concentration dependent and is induced by internal STP (Figure 

adapted from [2]) A) S-AMPH (10 µM) induced inward peak current for exposures less than 

30 s; however, for longer exposure times, a current that we term IPC remained long after S-

AMPH had been removed, and the amplitude of IPC was proportional to the exposure duration. 

S-AMPH peak currents were normalized to the briefest exposure time. B) A relatively brief and 

initial exposure to S-AMPH (20 s), which ordinarily would not produce a persistent current, 

did so if the concentration of S-AMPH was increased from 10 to 30 µM. C) Dopamine, which 

ordinarily would not produce IPC (left trace), induced a persistent current after 25 µM internal 

injection of S-AMPH (middle trace). Doubling the internal S-AMPH concentration (second 

injection) resulted in the generation of a larger IPC (right trace). 

10 nA 

S-AMPH 

Injection 

 

S-AMPH 

Injection 
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3.3.2. IPC does not depend on the lipophylicity of STPs  

Amphetamine is lipophilic and can partition through the membrane. It was suggested that 

certain drugs produce long lasting depolarizing currents through hDAT due to accumulation of 

these lipophilic compounds in the oocyte [119]. According to the lipophilicity model of IPC, when 

drugs are washed away, passive diffusion and partitioning of accumulated drugs to the outside  

will activate hDAT externally [119]. Figure 14 plots the magnitude of the persistent current 

measured 60 seconds after removal of compounds (10 µM) against the lipophilicity repesented 

represented using logP. logP if the octanol/water partition coefficient expressed in logarithm form. 

Its values were obtained from chemicalize.org.  High logP values represent more lipophilic 

molecules that would more easily penetrate lipid membranes and reach molecular targets such as 

ion channels, receptors, and in this case DAT.  Figure 14 shows that S-AMPH and R-AMPH, 

which have the same logP, differ in their ability to generate a persistent current: S-AMPH induced 

IPC, while R-AMPH did not.  Considering that both enantiomers of AMPH are equipotent in 

inducing ISTP in hDAT-expressing oocytes (1.31 ±0.22 for R-AMPH and 1.25±0.14 for S-AMPH, 

data not shown), lipophilicity cannot explain the differences observed in their ability to produce 

IPC. In addition, S-AMPH and S-METH have different logP values, yet the two compounds have 

approximately the same amplitude IPC.  Finally, S-MCAT has the highest persistent current of the 

group we studied, but is not the most lipophilic providing additional evidence that lipophilicity is 

uncorrelated with the ability of STPs to produce a persistent current.  
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Figure 14: IPC vs. lipophilicity. (Figure adapted from [5]). hDAT expressing oocytes, V= -60 

mV, room temperature. All drugs are applied for 60 s and at 10 µM in concentration. The 

persistent current is given as a fraction of the DA-induced current for each oocyte to normalize 

for expression levels from cell to cell.  The logP values were obtained from chemicalize.org.  

Mean +/- SEM (n ≥ 5).  
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3.3.3. IPC is induced by a unique conductance state of hDAT  

In order to definitively state that IPC is caused by a unique conduction state of hDAT, we 

compared the current-voltage relationships, I(V), of S-AMPH-induced ISTP and IPC  in Figure 15. 

All I(V) curves are buffer-subtracted to show only the drug-induced changes in conductance. The 

I(V) for IDA has a negligible slope at more positive potentials, interpreted as a blockade of 

endogenous conductance by DA [23]. Unlike DA, the S-AMPH-induced ISTP I(V) curve shifted to 

the left and has a reversal potential of approximately 0 mV. The S-AMPH IPC I(V) was further 

shifted to the left compared with STP and had a Vrev = -20 mV. This is the reported reversal 

potential of Cl- in oocytes and is further in agreement with previous publications of Cl- 

involvement in substrate-induced currents [24, 25].  
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Figure 15: Current-voltage relationship of IDA, ISTP, and IPC (Figure adapted from [2]). 

Baseline subtracted I(V) curves for DA, S-AMPH peak (ISTP) and S-AMPH persistent current 

(IPC). The S-AMPH ISTP I(V) is shifted to the left above -60 mV compared with the DA peak 

and reversed at 0 mV. The S-AMPH IPC I(V) is further shifted to the left and Vrev was at -20 

mV suggesting the flow of Cl- ions. 

S-AMPH, IPC 

S-AMPH, ISTP 

IDA 
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3.3.4. IPC causes a dysfunctional DAT state  

 As seen in Figure 13B, high concentrations of externally applied S-AMPH lead to more 

pronounced IPC. In Figure 16, we applied 100 µM S-METH to produce a large persistent current. 

Allowing some time for S-METH wash, substrates (10 µM DA and 100 µM S-METH) were pulsed 

to interrogate the conduction state of DAT. Surprisingly, neither DA nor S-METH were able to 

stimulate DAT currents from the IPC state, albeit the partial current recovery during the wash. It 

appears that S-METH locks hDAT in a conformation that is unable to interact with its substrates 

or induce currents upon external substrate application. To discriminate between transporter 

dysfunctional and transporter internalization (research shows DAT down-regulation in response 

to substrate exposure [120]), we designed a functional experiment to test transporter presence at 

the membrane.  
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Figure 16: S-METH induced dysfunctional hDAT hDAT expressing oocytes, V= -60 mV. 

100 s application of 100 µM S-METH induces a large IPC. 30 s pulses of 10 µM DA at 2, 4, and 

10 min after wash out cannot stimulate hDAT to elicit currents. 30 s pulse of 100 µM S-METH 

at 5.5 min was also unable to stimulate the transporter to elicit currents.  
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3.3.5. DAT’s dysfunctional state can be reversed using reuptake inhibitor  

In Figure 17 we took advantage of COC’s inhibitory action at hDAT to test if the 

transporter was unresponsive to substrates due to an IPC-induced dysfunctional state, or due to 

change in surface expression of hDAT. COC eliminated or reduced all hDAT-mediated currents 

reflected in the upward deflection of current that levels off above the original baseline (Figures 4, 

6, 9, and 10). In this experiment a 10 µM DA pre-pulse was followed by 100 s exposure to 60 µM 

S-METH. A large IPC was induced upon wash out of S-METH. One minute following removal of 

S-METH, 10 µM COC was perfused. As seen in Figure 17, COC was able to block both the IPC 

and IL. This demonstrates that the unresponsiveness of hDAT is due to a conformational change 

of the transporter upon interaction with internal S-METH, not due to its down-regulation. 

Additionally, a DA stimulus was delivered following COC block and an inward current with 

similar amplitude was observed, indicating that S-METH locks hDAT in a conduction mode not 

responsive to external stimulus, possibly due to a new conformational state that cannot form 

interactions with substrates that are necessary for eliciting substrate-induced currents. When DA 

was removed, the current did not return to the original baseline but IPC was maintained, likely due 

to internal S-METH accumulation. To test the effect of Na+ on IPC, the cell was perfused for 30 s 

with Na+-free, NMDG containing Ringer buffer. NMDG induced a pronounced upward shift in 

the current due to the inhibition of Na+ conduction through hDAT and possibly other oocyte 

endogenous Na+ pathways, which are inward at -60 mV [2, 23]. When Na+ was reintroduced during 

the subsequent DA application, IDA was generated and IPC ensued after the wash, likely due to the 

presence of internal S-METH. 
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Figure 17: COC recovers hDAT from substrate-insensitive state hDAT expressing oocytes, 

V= -60 mV. 90 s. application of 60 µM S-METH induces large IPC. 10 µM COC eliminates 

both IPC and IL. Following the block, 10 µM DA pulse is able to illicit IDA; nevertheless, IPC is 

observed upon DA wash out. 10 µM COC blocks hDAT current. Second DA pulse elicits IDA 

of the same magnitude as the 1st pulse. 30 s removal of Na+ (substitution with equimolar 

NMDG) eliminates hDAT and oocyte endogenous conductances. Upon introduction of Na+ the 

new baseline is still more depolarized compared to the original. Addition of 10 µM COC 

reduces hDAT’s constitutive leak and removal of Na+ for 1 min now is able to eliminate 

hDAT’s IPC. However, activation of hDAT with a 30 s DA pulse is able to again incur IPC. 
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3.4. hDAT expression in mammalian cells  

To investigate the implications of hDAT currents in more complex systems, we first 

assayed DA and STP effects in FlphDAT cells; a stable inducible cell line. Immunostaining in 

conjunction with confocal microscopy showed membrane localization of hDAT in FlphDAT cells 

three days after doxycycline induction (Figure 18), whereas the parental Flp-In T-rex 293 cells 

showed no hDAT expression (data not shown). In addition, hDAT protein levels were also 

visualized using Western immunoblotting. As seen in Figure 18 right, hDAT was absent in parental 

Flp-In cells and present in doxycycline induced FlphDAT cells. Equal amounts of protein loaded 

were confirmed using antibody against GAPDH.  
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Figure 18: Expression of hDAT in Flp-In T-Rex mammalian cells (left) Confocal image 

shows hDAT expression in FlphDAT cells (red stain concentrated at the membrane). DAPI 

nuclear staining appears in blue. (right) Parental Flp-In and FlphDAT were cultured and lysed to 

confirm expression of hDAT using Western immunoblotting. Antibodies against human hDAT 

and GAPDH were used as listed in “Methods”. 
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3.4.1. hDAT currents in HEK 293 cells  

In Figure 19 we compare the hDAT current elicited by DA and S-AMPH application under 

voltage clamp at V= -60 mV and physiological temperature. The currents are obtained from hDAT 

transiently transfected HEK 293 cells. 10 µM DA induces an inward current that returns to baseline 

when DA is removed. 30 s of 10 µM S-AMPH induces a similar inward peak current; however, 

the return of current upon wash out of S-AMPH is slower and persists tens of seconds for up to 

one minute. DA and S-AMPH are overlaid for better comparison of kinetics. Using a mono-

exponential function, the time constants for the current decay were obtained: τDA= 1.3 s, τS-

AMPH= 5.1 s, τS-AMPH/τDA= 3.8 [5]. The results agree with a study conducted by Sandtner et 

al. comparing serotonin (5-HT), p-chloroamphetamine (pCA), and 

methylenedioxymethamphetamine (MDMA) responses in hSERT-expressing Xenopus laevis 

oocytes and HEK 293 cells [119]. In oocytes, pCA-induced hSERT currents decayed 4 times more 

slowly than 5-HT with a half-life of 20 s and 5 s, respectively.  In HEK 293 cells, the pCA-induced 

current decayed 5 times more slowly than 5-HT, 2.5 s vs. 0.5 s respectively. Thus for Sandtner et 

al. the persistence ratio for drug to substrate was comparable in oocytes and HEK cells. Reviewing 

the τ of both this study and Sandtner et. al. published results, we see: 1) the absolute value of the 

off kinetics between oocytes and mammalian cells are 10 fold different with mammalian kinetics 

being faster, and 2) the ratio of the off kinetics of psychostimulant to control (endogenous 

substrate) is comparable in both expression system, approximately 4-5 fold difference. 
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Figure 19: Persistent current in hDAT transfected HEK cells Current through hDAT 

transiently transfected HEK 293 cells. V= -60 mV, T= 37°C. 30 s of 10 µM DA induces an 

inward current that returns to baseline when DA is removed. 30 s of 10 µM S-AMPH induces 

a similar inward peak current; however, the return of current upon wash-out of S-AMPH is 

slower and persists tens of seconds for up to one minute. DA and S-AMPH are overlaid for 

better comparison of kinetics. Using a mono-exponential function, the time constants for the 

current decays were determined: τDA= 1.3 s, τS-AMPH= 5.1 s, τS-AMPH/τDA= 3.8. Figure 

adapted from [5]. 
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3.4.2. Potency of S- and R- AMPH differs in mammalian cells  

In Figure 20 we explore hDAT currents in FlphDAT cells, voltage clamped to -60 mV using whole 

cell voltage clamp technique. We compare the currents elicited by various concentrations of DA, 

S-AMPH, and R-AMPH following a 30 µM DA pre-pulse. S-AMPH-induced inward currents with 

higher potency than DA and R-AMPH. Dose response curves were fit to Hill equation using Origin 

8: 

𝑦 = 𝑆𝑇𝐴𝑅𝑇 + (𝐸𝑁𝐷 − 𝑆𝑇𝐴𝑅𝑇)
𝑥𝑛

𝑘𝑛 +  𝑥𝑛
 

where x is the concentration of the tested compound, y is the response measured, START is min 

response and END is the maximal response, k is the concentration that yield half–maximal 

response, and n is the Hill slope parameter. EC50 = 1.50 ± 0.29 μM, 0.31 ± 0.04 μM, and 0.63 ± 

0.27 μM for DA, S-AMPH, and R-AMPH respectively. The efficacy of DA and S-AMPH was 

comparable (99 % and 101 %) while R-AMPH appears less efficacious similar to oocyte results 

(85 %) [50, 121]. A 2.4-fold potency difference appears between S- and R-AMPH in mammalian 

cells, which is not present in oocytes (equipotent in oocyte expression system).  A 6.3-fold potency 

difference exists between the S- and R-AMPH enantiomers, was reported by Sitte et al. in HEK 

293 cells stably expressing hDAT [50]. Possible reasons behind the potency variation between 

expressions systems and studies will be examined later in the Discussion.  
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Figure 20: Dose-response curves for DA and AMPH enantiomers in mammalian cells 
FlphDAT cells clamped at -60 mV were exposed to a constant DA pre-pulse and a variable pulse 

of DA, S-AMPH, and R-AMPH. The full dose-response curves were fit to Hill1 equation and 

yield the following fitting parameters: EC50 = 1.50 ± 0.29 μM, 0.31 ± 0.04 μM, and 0.63 ± 0.27 

μM and Hill Slope = 1.6 ± 0.1, 0.93 ± 0.1, and 0.78 ± 0.2 for DA, S-AMPH, and R-AMPH 

respectively. Each point shows mean ± SEM, n ≥ 5. 
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3.4.3. hDAT-induced currents are electrically coupled to voltage-gated Ca2+ channels  

To study the possible electrical coupling of hDAT and voltage gated Ca2+ channels, the 

voltage dependence of CaV1.2, CaV1.3, and CaV2.2 was determined in transiently transfected HEK 

293T cells. Figure 21 shows the I(V) relationship of the Ca2+ currents measured under whole-cell 

voltage clamp. The voltage dependence of the currents was fit to the following equation: 



ICa (V ) 
Gmax (V Vr)

1 exp
V1/ 2 V

k











 

where Gmax is the maximal conductance, V is the test potential, V1/2 is the potential at which G=1/2 

Gmax, k represent a slope parameter, and Vr is the reversal potential. 

Using this equation the test potential that yielded half of the maximal conductance (V1/2) 

was –25.6 ± 1.0 mV (n=8), –3.2 ± 0.8 mV (n=7) and +5.5 ± 1.0 mV (n=8) for CaV1.3, CaV1.2 and 

CaV2.2, respectively. The 30 mV range of V1/2 the three channels under investigation illustrates 

the variability in high-voltage activated CaVs. It is easy to imagine that depending on the 

expression levels of specific type CaV, similar amounts of depolarization may have or not an effect 

on excitability and neurotransmitter release. 
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Figure 21: Voltage dependence of Cav1.3, Cav1.2, and Cav2.2 Voltage dependence of 

CaV1.2, CaV1.3 and CaV2.2- mediated Ca2+ currents: HEK 293T cells were co-transfected with 

β3, α2δ, and EGFP expression plasmids plus alternatively CaV1.3, CaV1.2 or CaV2.2 plasmids. 

Recordings were carried out at room temperature under constant perfusion. Test pulses in 5 mV 

steps for CaV2.2 or 10 mV steps for CaV1.2 and CaV1.3 were applied from a holding potential 

of -80 mV. Representative responses are shown for CaV1.3 (light grey circle), CaV1.2 (dark 

grey triangle) and CaV2.2 (black square) and the magnitude of the test potentials are indicated 

in mV. V1/2 = -25.6 ± 1.0, -3.2 ± 0.8 and 5.5 ± 1.0 mV, CaV1.3 (n=8), CaV1.2 (n=7) and CaV2.2 

(n=8), respectively. Figure adapted from Cameron, Solis, Ruchala, De Felice, and Eltit, 

submitted for publication. 
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To determine if depolarization by S-AMPH- or DA-induced hDAT currents is sufficient to 

activate voltage-gated Ca2+ channels, Ca2+ signals were measured using the Ca2+ sensitive dye 

Fura-2AM in FlphDAT cells transfected with CaV1.2, CaV1.3, or CaV2.2 (Figure 22). Both, 5 s 

application at 35 °C of saturating concentrations of 10 μM DA  (upper panel) or 5 μM S-AMPH 

(lower panel), produced Ca2+ signals in FlphDAT cells expressing CaV1.3 or CaV1.2. The S-AMPH 

and DA stimulated increase in Ca2+ signal was blocked by 2 μM isradipine, a potent L-type Ca2+ 

channel blocker. Conversely, under the same conditions, the intracellular Ca2+ concentration did 

not change in FlphDAT cells expressing CaV2.2 (right trace). As seen in Figure 21 CaV2.2 requires 

the highest amount of depolarization to activate: + 5 mV. Depolarization induced by a sequential 

exposure to high K+ external solution (right trace, top and bottom) yielded a convincing Ca2+ 

transient demonstrating adequate expression of CaV2.2 in the cells, hence, insufficient hDAT-

induced depolarization to activate this type of channels.  
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Figure 22. S-AMPH- and DA-induced hDAT currents activate CaV1.2 and CaV1.3, but 

not CaV2.2. Intracellular Ca2+ determinations in Fura-2AM loaded Flp-hDAT cells evaluated 

by fluorescence microcopy, under constant perfusion and at 35°C. Flp-hDAT cells were co-

transfected with CaV1.3, CaV1.2 or CaV2.2 plus β3, α2δ and EGFP plasmids. Transfected cells 

were identified by their EGFP signal and then briefly exposed to 10 µM DA, 5µM S-AMPH, 

or 130 mM K+ as indicated in the timeline of each panel. 2 μM isradipine eliminates Ca2+ signals 

induced by both hDAT substrates. Each trace shows the mean ± SEM, n ≥ 81. Figure adapted 

from Cameron, Solis, Ruchala, De Felice, and Eltit, submitted for publication. 
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In Figure 22 we saw that both DA and S-AMPH application can activate CaV1.3 and 

CaV1.2. To rule out a direct activation of CaV channels by DA or S-AMPH, intracellular Ca2+ was 

determined in the presence of a potent hDAT blocker, MDPV [1, 6]. This reuptake inhibitor, as 

described earlier, blocks current and uptake with extremely high potency. Figure 23 shows 

perfusion of 1 µM MDPV eliminates both DA and S-AMPH-induced Ca2+ transients in FlphDAT 

cells expressing either CaV1.2 or CaV1.3. A control showing that MDPV does not directly interact 

with CaVs, hDAT-independent depolarization was induced by high K+ produced Ca2+ signals 

refractory to MDPV treatment.   
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Figure 23: hDAT blockade prevents L-type Ca2+ channel activation in FlphDAT cells 

Intracellular Ca2+ concentration was determined by fluorescence microscopy in Flp-hDAT cells 

co-transfected with CaV1.3 or CaV1.2 plus β3, α2δ and EGFP plasmids, using the Ca2+ sensitive 

dye Fura-2AM. The experiments were carried out under constant perfusion at 35°C. The 

transfected cells were identified by their EGFP signal and then were briefly exposed to 10μM 

DA, 5μM S-AMPH or 130 mM K+ as indicated in each panel. hDAT blocker MDPV (1μM) 

prevented Ca2+ signals induced by substrate-induced hDAT currents. Each trace shows the 

mean ± SEM, n ≥ 60. Figure adapted from Cameron, Solis, Ruchala, De Felice, and Eltit, 

submitted for publication. 

DA                   S-AMPH                   K+         DA                   S-AMPH                   K+         
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The depolarization induced by DA- or S-AMPH- hDAT interactions activates both L-type 

CaVs: CaV1.2 and CaV1.3. Dose –response effects measuring Ca2+ signals and hDAT current 

elicited by DA and S-AMPH in FlphDAT are shown in Figure 24. S-AMPH appears more potent in 

activating the two L-type Ca2+ channels (top panel) with EC50 of 144 ± 11 nM and 102 ±16 nM for 

CaV1.2 and CaV1.3 respectively, while the less potent DA has EC50 values of 916 ± 54 nM and 693 

± 25 nM, respectively. 

To better understand the electrical coupling between hDAT and the L-type Ca2+ channels, 

dose-response curves for DA- and S-AMPH-induced hDAT currents were generated (Figure 24, 

bottom left). Although the EC50 values were 5-fold different, 1.44 ± 0.24 μM and 0.28 ± 0.04 μM 

for DA and S-AMPH respectively, the efficacy were not different under the experimental 

conditions used.   

Lastly to see the coupling of hDAT currents and CaVs activation, we plotted Ca2+ signals 

fits vs. hDAT current fits (Figure 24, bottom right). These curves show that S-AMPH, compared 

to DA, generates a relatively larger Ca2+ transient in response to smaller hDAT inward currents. 

With both DA and S-AMPH, CaV1.3 activated more than CaV1.2, confirming that it requires less 

hDAT-induced depolarization to open. From this plot we see that small amplitude S-AMPH-

induced hDAT currents were coupled tighter than DA to both CaVs activation.  

.   
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Figure 24: S-AMPH is more potent in producing Ca2+ signals, hDAT currents, and hDAT-

CaV coupling  Intracellular Ca2+ concentration was determined by fluorescence microscopy in 

Flp-hDAT cells co-transfected with CaV1.3 or CaV1.2 plus β3, α2δ and EGFP plasmids, using 

the Ca2+ sensitive dye Fura-2AM. (top) Dose-response curves were generated for DA and S-

AMPH activation of CaV1.2 or CaV1.3 through hDAT-induced depolarization. EC50 values in 

CaV1.2: 916 ± 54 nM and 144 ± 11 nM for DA and S-AMPH respectively. EC50 values in 

CaV1.3: 693 ± 25 nM and 102 ±16 nM for DA and S-AMPH respectively. (bottom left) hDAT 

currents were measured using whole-cell voltage clamp, V= -60 mV, T= 35ºC. EC50 = 1.44 ± 

0.24 μM and 0.28 ± 0.04 μM for DA and S-AMPH respectively. (bottom right) The Ca2+ signal 

fits of both CaV1.2 and CaV1.3 are plotted against the normalized current fit to represent hDAT-

CaV coupling. Figure adapted from Cameron, Solis, Ruchala, De Felice, and Eltit, submitted 

for publication. 
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3.5. hDAT current effect in neurons  

3.5.1. LUHMES selection 

To investigate the importance of hDAT currents on cellular excitability we chose a human 

mesencephalic neuronal cell line, LUHMES. The line is subcloned of a source material derived 

from eight-week-old human ventral mesencephalic tissue [122]. The committed neural precursor 

cells were transformed with myc oncogenes for continuous proliferation [123]. Addition of low 

tetracycline concentration abolishes the v-myc expression. DA phenotype is confirmed in many 

studies [114, 122, 124]. In addition, the use of dbcAMP during differentiation, leads to TH 

production; therefore, LUHMES synthesize and release DA [123]. To determine the optimal 

conditions for our study with the highest expression of both dopaminergic and neuronal marker 

we explored different time courses of differentiation. As seen in Figure 25, the cells undergo 

dramatic morphological changes upon differentiation induction. Using inverted microscopy with 

10x magnification we see undifferentiated cells at day 0 (left panel) have relatively large somas 

and cell neurites are absent. Using 20x magnification, 5 days post differentiation the cells appear 

to have short neurite network and the somas appear smaller and more round. At 10 days post 

differentiation (20x magnification) the cells have long, dense network of projections and a small, 

round cell body. 
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Figure 25: Conversion of LUHMES from proliferating to post-mitotic neurons LUHMES 

were differentiated for 10 days in presence of tetracycline, GDNF, and dbcAMP. Images of 

undifferentiated (Day 0) and differentiated (Day 5 and 10) cells are shown. Cells undergo 

morphological changes and appear as mature neurons at Day 10 with dense network of 

projections and smaller and rounded cell bodies. Cells were examined using inverted 

microscope using 20x magnification for day 0 and 40x magnification for days 5 and 10.  
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3.5.2. Differentiation changes 

Immunostaining in conjunction with confocal microscopy showed modest expression of 

hDAT at 7 and 10 days of differentiation respectively. Figure 26, left panel, shows membrane 

localized hDAT (red stain) at cell body and processes 10 days post differentiation. Staining for all 

voltage-gated Na+ channels (NaVs, green stain- Pan antibody with epitope present in all NaVs in 

vertebrates) appears at cell body and processes and partial co-localization with hDAT is observed 

(not shown). DAPI nuclear staining appears in blue.  

In attempt to boost hDAT’s expression level, the use of retroviral transduction of hDAT in 

the parental LUHMES cell line was employed. To evaluate the expression level of hDAT in 

parental and transduced LUHMES (LUHMEShDAT), we used Western immunoblotting of 

undifferentiated and Day 7 of differentiation cells (Figure 26, right). Day 0 parental LUHMES 

have no detectable levels of hDAT, while the transduced LUHMEShDAT show hDAT expression. 

After 7 days of differentiation, parental LUHMES show a significant level of hDAT expression 

(larger than transduced at Day 0), whereas LUHMEShDAT shows complete lack of hDAT. The 

control GAPDH shows equal amount of protein is loaded for the comparison. Optimum hDAT 

condition appears to be 7 days of differentiation of parental LUHMES. 
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Figure 26: hDAT expression in Lund derived human mesencephalic cells (LUHMES) 

(left) Confocal image shows hDAT (red stain) expression in LUHMES cells at 10 days of 

differentiation. DAPI nuclear staining appears in blue. (right) LUHMES and hDAT transduced 

LUHMES (LUHMEShDAT) were cultured and lysed before or 7 days post differentiation to 

assay the expression of hDAT using Western immunoblotting. Antibodies against human 

hDAT and GAPDH were used as listed in “Methods”. 
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In order to better characterize the differentiation, in Figure 27 we analyzed the parental 

LUHMES (top) and LUHMEShDAT (bottom) for seven genes of importance for neural and 

dopaminergic phenotype using qPCR (quantitative polymerase chain reaction). To find the peak 

for dopaminergic markers we chose to monitor mRNA levels for DAT, tyrosine hydroxylase (TH), 

and dopamine receptor 2 (D2R). In addition, we were interested in finding the peak electrical 

activity time point since we investigate activation of voltage-gated channels related to AP 

generation; therefore, we chose to monitor endogenous dopaminergic channels: CaV1.3, CaV1.2, 

NaV1.2, and G-protein-regulated inward-rectifier potassium channel 2 (GIRK2). Results were 

normalized to the expression of GAPDH mRNA (control gene encoding glyceraldehyde phosphate 

dehydrogenase) and are presented as fold difference relative to expression in undifferentiated 

parental LUHMES (day 0).  

Parental LUHMES displays an increase in mRNA levels of all genes in day 5 as compared 

to day 0 with TH and CaV1.3 being absent at day 0 but in detectable amounts at day 5. The mRNA 

levels of hDAT, both CaVs, and NaV continued to increase, revealed in day 10. For D2R, GIRK2, 

and TH, the mRNA levels were lower at day 10 compared to day 5.  

LUHMEShDAT appears in some ways similar to parental LUHMES: mRNA for TH and 

CaV1.3 were undetectable at day 0 but present at day 5. All other genes of interested, except for 

hDAT, were detectable at day 0 in equal amounts to the parental line. All genes of interst showed 

increasing mRNA levels at day 5. hDAT appeared strongly upregulated at day 0 of transduced 

LUHMES, 755-fold increase compared to parental line, and as expected it increased at day 5. The 

levels of hDAT mRNA in LUHMEShDAT at day 5 were much higher than parental line (1538-fold 

vs. 28-fold); however, this was the peak level observed in LUHMEShDAT and the peak in parental 

line at 10 days was higher (1960-fold vs. 1538-fold). At day 10, the transduced line only showed 
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increase in mRNA levels of CaV1.2 and NaV1.2. All other genes appeared to have decreasing 

amount of mRNA, especially out target hDAT and TH was not detectable. As a result of the 

findings we picked LUHMES differentiation of 7-9 days for further studies.  
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Figure 27: Quantitative PCR analysis of dopaminergic and neuronal mRNA in LUHMES 

and LUHMEShDAT Data from day 0, 5, and 10 of differentiation. Results are normalized to the 

expression of GAPDH mRNA (control gene encoding glyceraldehyde phosphate 

dehydrogenase) and are presented as fold difference relative to expression in undifferentiated 

LUHMES (day 0). (top) Both neuronal and dopaminergic markers increase with days of 

differentiation. CaV1.3 and TH are not detected before differentiation therefore data is 

normalized to Day 5. (bottom) LUHMEShDAT values show initial high mRNA levels of hDAT 

at day 0 which decline at day 10. CaV1.3 and TH are not detected before differentiation. 
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3.5.3. STP effect on LUHMES excitability 

LUHMES cells were differentiated for 9 days. Intracellular Ca2+ concentration was 

determined by fluorescence microscopy using the Ca2+ sensitive dye Fura-2AM. The experiments 

were carried out under constant perfusion at 35 °C. A 5 min perfusion protocol was designed to 

monitor the change in excitability (transient Ca2+ increase in the cell soma due to CaV opening, no 

increase from cellular stores).  

While exploring for best imaging conditions, we discovered that the UV light used for 

signal acquisition affects profoundly the cells. As a result, all measurements were acquired under 

11% light intensity and 200x gain. Two recordings per set of cells were done. First, pictures were 

taken under physiological imaging solution (IS-control set). The same set of cells is then exposed 

to the test condition. During the course of investigation, we observed vastly different results in 

cellular activity between different wells seeded with same number of cells. While some cells had 

very little activity in both imaging solution and test condition, others appear to be dramatically 

stimulated with the test condition. Upon further control testing (consecutive IS applications) we 

determined that certain cells increase their activity yet again due to UV light used for signal 

acquisition.  

To eliminate the variability induced by the prolonged light exposure (2x 5 min), we used 

only one 5 min Ca2+ measurement per set of cells. In Figure 28, three test conditions were used: 

buffer solution showing background activity, 2 μM S-METH, and 2 μM S-METH in Ca2+ free 

buffer. Due to difficulty of identifying and selecting active projections from single cell (very dense 

and complex network) data were only collected from the cell somas. All cells within the imaging 

frame were selected and data were exported and manually reviewed for Ca2+ increases indicative 

of cell excitability. To compare between control (IS) and test conditions (2 μM S-METH and 2 
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μM S-METH in Ca2+ free buffer), % excitable cells was calculated for each frame which equates 

# cells with Ca2+ signal increase above 0.5 / total # of cells in that frame * 100.  As many as 11 

frames were acquired and used for the calculation of the final mean. The results are expressed as 

mean ± SEM. In comparing control buffer (IS) condition to S-METH we saw an increase in cell 

excitability; however, the difference was not statistically different. Due to the high variability 

between cells, additional recordings could be beneficial in decreasing the error and possibly 

turning the increasing trend to being statistically different. 

The second test condition tested was S-METH application in Ca2+ free buffer. This 

experimental condition was used to determine if the Ca2+ increase comes from outside source 

through the activation of CaVs similar to our finding in Figures 22 and 23, or from internal store 

release. The % excitable cells decreased significantly (p < 0.05) in Ca2+ free conditions. 

In the course of the study using LUHMES it was established that this cell line shows low 

spontaneous activity and due to the requirement for highly confluent cells, voltage clamp and 

current-clamp experiments were not within our reach. This cell line would be best for performing 

biochemical analyses which require a large number of cells.  



www.manaraa.com

 

 

80 

 

  

 

Figure 28: Excitability of LUHMES LUHMES cells were differentiated for 9 days. 

Intracellular Ca2+ concentration was determined by fluorescence microscopy using the Ca2+ 

sensitive dye Fura-2AM. The experiments were carried out under constant perfusion at 35°C. 

The cells were exposed to 2 μM S-METH or 2 μM S-METH in Ca2+ free buffer. The % of 

excitable cells was calculated as # cells with increased intracellular Ca2+ above 0.5 / total # cells 

*100. Each bar represent mean ± SEM, n ≥ 200. 

 



www.manaraa.com

 

 

81 

 

Chapter 4 DISCUSSION 

 

 

 

 

In this work, we present novel results for the action of S-enantiomers of STPs on hDAT, 

in particular, the effect of STPs on transporter currents that modulate voltage-gated channels 

involved in dopaminergic excitability. DAT currents are much larger than the predictions of fixed 

stoichiometry transport: 1DA, 2 Na+, and 1 Cl- which would produce only 0.16 pA current if 1 

million transporters would be active simultaneously. Relatively large DAT currents are measured 

not only in over-expression systems but also in dopaminergic neurons [1, 2, 6, 25, 47, 125]. The 

role of DAT currents is not clear at this time; however, because the current is relatively small in 

amplitude and it can persist after stimulation is removed, we hypothesize that it would have an 

influence on neuronal excitability. 

Our results suggest when an STP is transported into the cell through hDAT, it accumulates 

inside the cell and interacts with an internal site on hDAT, since a persistent current is observed 

after STP removal. This interaction interferes with transporter’s swift closure upon STP removal 

resulting in a long-lasting depolarization after external STP exhaustion (longer than would persist 

with DA). The presence of a persistent depolarization in a neuron may have an effect on neuronal 

excitability, a probability of neurotransmitter release, and could potentially be toxic. Furthermore, 

we showed that once S-AMPH or S-METH accumulates inside the cell, hDAT has an altered 

response towards its endogenous substrate, DA (DA stimulation now produces IPC), and in the 
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Xenopus oocyte expression system, S-METH induces a dysfunctional state of the transporter that 

does not respond to subsequent substrate exposure (i.e., does not elicit additional currents). This 

dysfunctional state was reversed by COC, a DAT reuptake inhibitor. A subsequent DA pulse elicits 

IPC after wash out since S-METH has built up in concentration inside of the oocyte. This 

experiment in addition to the internal S-AMPH injections illustrates the long term effects that IPC 

exerts on DAT function. 

We found that in oocytes the persistent current is pronounced, with a clear shift in baseline 

in addition to slowing the off-kinetics. When we performed equivalent experiment in mammalian 

HEK 293 cells we saw a prominent difference in DA and S-AMPH off-kinetics; however, the 

current does not establish a new baseline which is the case in oocytes. Although there are dissimilar 

effects in the STP-induced DAT currents in the two expression systems, the ratio of STP/DA time 

off is ~4. I.e., although HEK cells have faster kinetics than oocytes, this is true for DA as well as 

for the STPs resulting in the same ratio. In both expression systems, the ratio of STP/DA time off 

is ~4. Similar results are reported in SERT expressed in both oocytes and HEK 293 cells upon 

exposure to pCA and 5-HT [119]. The off ratio of pCA/ 5-HT was determined to be ~ 4-5 [5, 119].  

In addition to a no baseline shift in HEK 293 cells, we saw no effect of STPs on DAT 

activity, in contrast to the effect observed in oocytes (data not shown). No matter the concentration 

of the STP delivered (inside the cell through the patch pipette, or outside through perfusion) the 

IPC remained unaltered or produced relatively minor shifts in the off-kinetics. A possible 

explanation for the variable observations between oocyte and HEK 293 cell recordings could be 

the difference in techniques employed. In TEVC used for the oocyte recordings, the inside of the 

cell is not dialyzed which is the case in whole-cell patch-clamp employed with HEK cell 

measurements. If there is a requirement for an important soluble component to observe IPC, 
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perforated patch clamp techniques should eliminate the inconsistencies. Additionally, differences 

in lipid composition, temperature of solutions (room T vs. 35 ºC), and secondary protein 

interactions could account for the discrepancies.  

A further suggestion that secondary factors exist that affect hDAT function in the two 

expression systems is the finding that S- and R-AMPH, that appear equipotent in oocytes have a 

2-fold potency difference in mammalian cells [2, 121]. Even more striking is the difference in 

potency of the enantiomers to elicit hDAT currents under whole-cell patch clamp at physiological 

temperature, with the only difference in the results coming from stable vs. transient transfection of 

hDAT (data from Figure 21 and reference# [50]). Here we show 2-fold difference in EC50 values 

of S-AMPH and R-AMPH, while Sitte et. al. report ~7-fold difference [50]. 

How do we explain the persistent current? Since we observe IPC after washout of the STP, 

an internal site of STP action at the transporter is hypothesized. IPC is STP concentration- and time-

dependent supporting the hypothesis that STPs act at an internal site on DAT. Direct injection of 

a STP inside the cell does not elicit any current; however, when an external stimulus is applied to 

activate hDAT currents, IPC is observed. This finding suggests that the internal interaction must be 

in a place that is not accessible in the closed state of hDAT; rather a specific conformation 

(conducting state) is required for the STP to access a site and establish interactions that then 

interferes with the swift closure of the transporter. One possible site for this interaction would be 

near the internal transporter gate. A potential interaction at this location with residues forming the 

gate or residues interacting with the gate would affect the proper closure of the transporter. Further 

studies including molecular simulations and mutagenesis are warranted to answer this question. 

Knowing the electrophysiological signature of the enantiomers of AMPH, we proceeded 

to investigate the mechanism of action of components of bath salts. Bath salts consist of 
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heterogeneous mixtures of various psychoactive substances, primarily synthetic cathinones. Drug 

sample analyses reveal that bath salts can contain a complex mixture of compounds such as 

cathinones (MEPH, MDPV, methylone, butylone, flephedrone, etc.), other abused substances 

(AMPH, MDMA, COC), and caffeine [75, 89]. Due to the wide range of compounds and 

compound combinations found in bath salts it is important to identify their mechanisms of action 

alone and in combination. Since MEPH and MDPV appear to be most prevalent on the market, we 

explored those two compounds in greatest detail, individually and together in varying proportions 

[1].  

Our findings show that similar to AMPH and METH, MEPH is an hDAT substrate because 

it produces an inward current at physiological membrane potentials under voltage clamp. Its 

maximal current amplitude or efficacy is approximately 50% of IDA; however, MEPH induces a 

large persistent current that is approximately twice in absolute value size of S-AMPH and S-

METH-induced IPC under the same conditions, which would enhance its DA releasing capacity in 

neurons [1, 6]. MEPH-induced IPC is 2nd largest after S-MCAT which may change if only the more 

potent enantiomer is used. Other studies in synaptosomes report that MEPH inhibits dopamine 

uptake in agreement with our findings that it has dopaminergic effects similar to the STPs [126]. 

This agrees with numerous other studies, presenting that both in vitro and in vivo MEPH appears 

as a mixed, nonselective releaser of not only DA but also of 5-HT [3, 78]; hence, it resembles the 

action of MDMA. Although MEPH is self-administered, in vivo studies on motor stimulation show 

a modest increase, much lower compared to METH, pointing again toward dual dopaminergic and 

serotonergic action [82]. 

3,4-methylenedioxypyrovalerone (MDPV) is a common bath salts component that we 

discovered is not a substrate for hDAT [1, 6, 78, 127]. MDPV behaves similar to a cocaine-like 
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dopamine reuptake inhibitor. Like COC, MDPV produces an outward current at hDAT and can 

inhibit both ISTP and IPC when applied in succession to STP. Simmler et al. showed that MDPV has 

a very high affinity for DAT [78]. MDPV is 20-30-fold more potent than COC in DAT transport 

inhibition [1, 78]. In our electrophysiological assays, MDPV produced more outward hDAT 

current than COC in oocytes voltage-clamped to -60 mV. This is a strong indication that COC 

inhibits only partially hDAT’s endogenous leak current while MDPV inhibits more, or potentially 

all, leak current. Under voltage clamp, MDPV produced a long-lasting outward current deflection, 

while COC blockade of the endogenous DAT current was short-lived under the same conditions. 

An in vivo rat ICSS study showed similarly a long-lasting effect of MDPV (Figure 29) [1, 3]. 

Bonano et. al show that MDPV produced ICSS facilitation that was significant after 300 min 

(upward triangle, Figure 29), with facilitation still present 24 h after drug administration [3]. The 

recovery of hDAT current following MDPV inhibition was investigated first in oocytes and 

compared to DAT current recovery following COC block. There was 100% recovery of DA-

induced hDAT current 1 min after COC blockade, whereas 1 min after MDPV block there was 

11% recovery IDA and 30 min later there was only 45% recovery which we hypothesize may be 

partially due to hDAT up-regulation induced by reuptake inhibitors.  
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Figure 29: Time courses (±)-MDPV effects on full ICSS frequency– rate curves. Drug 

effect of 3.2 mg/kg (±)-MDPV. Abscissae: frequency of electrical brain stimulation in log Hz. 

Ordinates: percent maximum control reinforcement rate (%MCR). Filled points represent 

frequencies at which reinforcement rates were statistically different from vehicle rates as 

determined by two-way ANOVA followed by Holm– Sidak post hoc test, p<0.05. All data 

show mean ± SEM for six rats. Figure adapted from [3]. 
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To test if MDPV has also a long-lasting inhibitory effect on hDAT uptake, its action was 

tested in HEK 293 cells under no voltage clamp. In this case we tested not the ability of hDAT to 

elicit DA currents, but rather the transport process itself. We took advantage of an hDAT 

fluorescent substrate (APP+ [111]) and showed that after MDPV block, it took 5 min for the 

transporters to completely recover their rate of transport as compared to immediate recovery after 

COC block. We may speculate that either MDPV is still present and available after external 

removal (e.g. due to high lipophilicity [78]), or MDPV induces a long-lived conformational state 

in hDAT.  

An interesting finding about IPC was revealed while testing the COC and MDPV block of 

hDAT currents. When COC and MDPV were applied to baseline current levels (before DA or STP 

exposure), both compounds elicited long lasting inhibitory effects (reflected in a stable outward 

current deflection for minutes). However, when COC and MDPV were applied during a persistent 

current state of the transporter, the outward current (above baseline level) was long-lasting only in 

the case of MDPV whereas COC’s block reversed to IPC as soon as the compound was washed out. 

These findings suggest that the IPC is a distinct conduction state of the transporter rather than an 

exaggerated IL.  

It is known that both MEPH and MDPV enhance DA neurotransmission [3]. Whereas bath 

salts are not well defined as a mixture, samples include MEPH, MDPV, methylone and other 

compounds [83]. So far, most studies report exposure to single cathinone analogue; therefore we 

explored how two synthetic cathinones act together when applied simultaneously to hDAT. We 

observed a two-component response separated by a few seconds: first, an inward current induced 

by the substrate MEPH ensued followed by the outward current induced by MDPV [1]. The 

magnitude and duration of the inward current depended on the concentration balance of the two 
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compounds. These results suggest DA release could precede DA uptake blockade in a mixture of 

bath salts containing MEPH and MDPV. Furthermore, the blockade of hDAT by MDPV is longer 

lasting than the blockade by COC, hence, a long-lasting neurochemical, physiological, and 

behavioral effects would be observed [3]. Although in vitro experiments are far removed from the 

in vivo conditions of drug abuse, this synergistic combination may be especially dangerous to the 

user for whom the combined action of releasing drugs and blocking drugs is greater than the sum 

of their individual effects. 

Studies in dopaminergic neurons report increased excitability (firing rate) caused by 

substrate-induced DAT currents [24, 25, 59, 125]. The reports show that DAT-dependent increases 

in neuronal excitability display results during drug application (i.e., ISTP and IDA). Moreover, some 

reports highlight that only low concentrations of STPs enhance neuron firing and 

neurotransmission, whereas high concentrations of substrate inhibit firing as a result of D2 

autoreceptor activation [125]. In our studies we explored possible cross-talk of hDAT and specific 

L- (CaV1.2 and CaV1.3) and N-type (CaV2.2) CaVs co-expressed in mammalian Flp-In T-rex 293 

cells. These voltage-gated Ca2+ channels are, reportedly, involved in dopaminergic neuron 

excitability (L-type) and vesicular fusion (N-type). Our results demonstrate that DA- and S-

AMPH-induced hDAT currents are sufficient to depolarize the cells enough to activate both L-

type Ca2+ channels (CaV1.2 and CaV1.3) but not N-type (CaV2.2). This is not a surprising finding 

as a broad range of voltage sensitivity is observed among Ca2+ channels. CaV1.2 and CaV2.2 have 

a ~20 mV and ~30 mV right shifted voltage dependence compared to CaV1.3 respectively. These 

results indicate that the hDAT-mediated depolarization is in the range of the activation threshold 

of some CaVs: L-type (CaV1.2 and CaV1.3) but not N-type (CaV2.2) CaVs are within the activation 

range of hDAT-mediated depolarization under our experimental conditions. The results also 
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suggest that S-AMPH- and DA-induced currents through hDAT are qualitatively different, with 

S-AMPH producing greater L-type channel activation. One explanation for the difference could 

be the different ionic composition of IDA and ISTP as reported by Rodriguez-Menchaca et. al. 

(different reversal potentials with DA and S-AMPH I(V)s crossing at – 80 mV) [2]. Another 

possible explanation for the S-AMPH superiority in activating CaVs at low transporter steady-state 

current levels is the existence of transient peak current that can be resolved under piezoelectric 

rapid solution exchange [47]. This transient peak current which is several folds larger than the ISTP 

decays rapidly to form the steady state peak current which we name ISTP. Although ISTP it is also 

present with DA, it is reported to be significantly larger in AMPH [47].  

 To understand better the coupling of IDA or ISTP to Ca2+ channel activation, we looked at 

the Ca2+ signal to hDAT current relationships of DA and S-AMPH at CaV1.2 and CaV1.3. The 

results were consistent with the voltage-dependence of the channels: CaV1.3 which displays the 

lowest voltage dependence had greater coupling strength for S-AMPH and DA as compared to 

CaV1.2. The initial high coupling strength values at low IDA and ISTP may activate a small 

percentage of the lowest threshold CaV1.3 whose Ca2+ conductance may favor further 

depolarization which would recruit more CaV1.3 thus potentiating the coupling-strength. At higher 

IDA and ISTP, increase in internal Ca2+ may induce channel saturation and inactivation, thus 

decreasing the coupling-strength. Furthermore, in dopaminergic neurons the increase in 

intracellular Ca2+ causes Ca2+ activated K channels to open and re-polarize the cells. 

In this study we show that hDAT is electrically coupled to L type CaVs important in cell 

excitability. We have also presented that in addition to the peak current, STPs generate a persistent 

current (IPC) through hDAT. We hypothesize that IPC would prolong depolarization induced by 

STP after washout and although in the synapse the voltage is not clamped but rather dynamic, the 
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effect of the internal STP could be elicited after either tonic or phasic DA release upon uptake. 

Moreover, cell depolarization is shown to impair DA uptake [10, 11, 128], therefore, IPC may 

contribute through several different mechanisms to extracellular DA augmentation associated with 

drug addiction. Interestingly and in addition to the increased excitability due to hDAT 

conductance, at high STP concentrations several reports show that instead of enhancement of 

dopamine neurotransmission and dopamine neuron firing, the opposite is observed [24, 125]. 

Autoinhibitory D2 receptors are activated by the released DA and neuronal firing is decreased 

[125]. The caveat again is that under hyperpolarized conditions, DAT exhibit a more efficient 

uptake, so more STP or DA would enter the cell and as I(V)s show, at hyperpolarizing potentials 

IDA and ISTP are larger [2, 10, 11, 128]. Hence, we designed experiments to test our hypothesis on 

increased neuronal excitability due to hDAT currents: ISTP and IPC. For this purpose we selected a 

neuronal cell line from human mesencephalon, LUHMES, which has been immortalized for 

continuous proliferation and continuous formation of committed dopaminergic neuronal precursor 

cells. Upon completion of biochemical analyses to determine the best conditions for expression of 

both dopaminergic and neuronal markers, we identified a few potential problems that affected our 

future work. The cells have a low hDAT expression. After 7 days of differentiation we did not 

detect hDAT-specific uptake using the fluorescent substrate APP+ (data not shown). Furthermore, 

only approximately 10 % of cells appeared spontaneously active, and even transduction with 

hDAT aimed at increasing hDAT’s levels was unsuccessful in producing larger effects, apparently 

due to early down-regulation or degradation of transporters during the differentiation process. In 

addition to these challenges, the cells undergo dramatic morphological changes during 

differentiation, grow long and dense network of projections while the soma becomes small and 

round making it technically difficult to voltage-clamp or current-clamp the cells. To overcome 
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those obstacles, we took a different approach to monitor the cellular excitability: we measured 

Ca2+ signals as we did with FlphDAT. The Ca2+ dye acts almost as a voltage sensor since we show 

that CaVs activation require certain amount of depolarization. In addition, we can confirm that 

increases in internal Ca2+ are due to voltage-gated channel activation rather than release from 

internal stores since we can easily manipulate extracellular Ca2+ as in out experiment. We faced 

further hurdles with the Fura-2 Ca2+ signals measurements due to UV light-stimulated LUHMES 

activity. Although we decreased the UV light to only 11% intensity, we could still see increase in 

Ca2+ signals with some cells during our 10 min experimental protocol (5 min buffer/control, 5 min 

test condition). Finally we acquired 5 min signal for single condition and increased the number of 

measurements to get a reliable mean value. The results from our study suggest that additional 

image acquisitions will be necessary. Nevertheless, an increasing trend in excitability occurred by 

this measure between control/buffer and S-METH application; however, due to the large statistical 

error we saw no significant difference in the values. On the other hand, there was a significant 

decrease in excitability when the external Ca2+ was removed, confirming the importance of CaVs 

in dopaminergic neuronal excitability [94, 101]. 

In summary, this investigation on the conduction states of the dopamine transporter reveals: 

1) reuptake inhibitors could exert only partial block of hDAT’s endogenous leak current as seen 

with COC and MDPV, 2) substrate type psychostimulants (STPs) induce a steady-state peak (ISTP) 

and a persistent current (IPC) through hDAT, 3) DA and STP induced currents (IDA and ISTP) may 

activate L-type voltage-gated Ca2+ channels, 4) L-type CaVs activation increases dopaminergic 

excitability and removal of external Ca2+ abolishes neuronal firing. Additional studies are required 

to investigate the possible effects of IPC on neuronal excitability and DA release, i.e. compare the 

excitability induced by S- and R- enantiomers of STPs. As discussed earlier, depolarization by the 



www.manaraa.com

 

 

92 

 

STPs would cause exocytotic DA release, and the uptake of DA would be interfered by not only 

STP competition for transport but also by depolarization-induced DAT uptake slowing down, and 

D2 receptors hyperpolarization. That however, would cause DAT uptake to become more efficient 

and STPs would once again elicit larger currents. Understanding this complex mechanism of action 

of drugs at hDAT is of great importance since a number of synthetic cathinones have invaded the 

clandestine market and we have shown that some act through DAT and produce large persistent 

currents with physiological effects after their removal [1, 6].   
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